
Programmer’s
fs

(May, 1997)

FORE Systems, Inc.
1000 FORE Drive

Warrendale, PA 15086-7502

Phone: 412-742-4444

FAX: 412-742-7742

Part # (MANU0023-02)

Reference Manual
for AALI Interface

Legal Notices

Copyright 1997 by FORE Systems, Inc. - Printed in the USA.

All rights reserved. No part of this work covered by copyright may be reproduced in any form. Reproduction,
adaptation, or translation without prior written permission is prohibited, except as allowed under the copy-
right laws. The information in this document is subject to change without notice.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013 (October 1988) and FAR 52.227-19 (June 1987).

TRADEMARKS

FORE Systems is registered trademarks of FORE Systems, Inc.

ForeRunner is a trademark of FORE Systems, Inc.

Intel and i960 are registered trademarks of Intel Corporation.

SunOS is a trademark of Sun Microsystems, Inc.

SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are
based on an architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc., in the U.S.A. and other countries.

All other brand or product names are trademarks or registered trademarks of their respective companies
or organizations.

Table of Contents
Preface
Technical Support . i
Typographical Styles . ii
Important Information Indicators . iii

CHAPTER 1 Introduction
1.1 Introduction. 1-1

1.1.1 Overview . 1-1
1.2 CP and Host Interaction . 1-2
1.3 Host Resident Block . 1-3

1.3.1 Queue Scheduling . 1-4

CHAPTER 2 PDU Transmission and Reception
2.1 PDU Transmission . 2-1

2.1.1 Tsd Description . 2-1
2.1.2 Tpd Description . 2-2
2.1.3 Transmit Process . 2-3

2.2 PDU Reception . 2-6
2.2.1 Receive Buffer Descriptors . 2-8
2.2.2 Receive Buffer Schemes and Sizes . 2-8
2.2.3 Receive PDU Descriptors . 2-9
2.2.4 Buffer Supply Protocol. 2-10

CHAPTER 3 Commands
3.1 Activate VCIN Command. 3-3
3.2 Deactivate VCIN Command. 3-4
3.3 Deactivate VCIO Command . 3-4
3.4 Activate VCIO Command. 3-4
3.5 SUNI OC3 Set Register Command . 3-5
3.6 SUNI OC3 Get Register Command . 3-7
3.7 Statistics Command . 3-8

CHAPTER 4 Initialization
4.1 Downloading the AAL Interface Firmware . 4-1

4.1.1 Fast Downloading . 4-1
4.1.2 Notes on the Firmware . 4-2
4.1.3 The Host/CP Endian Description . 4-3

4.1 Downloading the AAL Interface Firmware . 4-4
4.2 The Cp_queue Structure . 4-5

4.2.1 Initialize Queue Pointers . 4-6
4.3 CP Boot Sequence. 4-7
4.4 Heartbeat - CP State Indication . 4-9

APPENDIX A DMA Address Alignment
A.1 Minimum DMA Requirements . A-1

APPENDIX B Host - CP Shared Memory Definitions
B.1 Memory Offsets .B-1

APPENDIX C MCA Modifications
C.1 New Functionality . C-1

C.1.1 Data Structure . C-1
C.1.2 Host CP Interaction . C-1

APPENDIX D SBA-200E SBus Slave Interface
D.1 SBus Slave Module. D-1
TOC - 1Programmer’s Reference Manual for AALI Interface

Table of Contents
D.2 Host Control Register . D-1
D.3 SBus Burst transfer configuration register . D-2
D.4 Interrupt Level Select Register . D-3

APPENDIX E ESA-200E EISABus Slave Interface
E.1 EISABus Slave Mode . E-1

E.1.1 Host Control Register (HCR) . E-1
E.1.2 High Base Address Register (HBAR) . E-3
E.1.3 Low Base Address Register (LBAR) . E-3
E.1.4 Slave Memory Addressing . E-4
E.1.5 Hold Lock Memory Access. E-4
E.1.6 Slave Controller Reset . E-4

APPENDIX F GIA-200E GIO Bus Slave Interface
F.1 GIOBus Slave Interface . F-1

F.1.1 Processor Identification Word (PIW). F-1
F.1.2 Host Control Register (HCR) . F-2
F.1.3 Host Control Register #2 . F-3
F.1.4 Adapter Configuration PROM. F-3
F.1.5 Local RAM . F-3

APPENDIX G PCA-200E PCI Bus Slave Interface
G.1 Slave Interface. G-1

G.1.1 Configuration Registers . G-1
G.1.2 Host Control Register (HCR) . G-5
G.1.3 Mask Register . G-5
G.1.4 PCI Specific Register (PSR). G-6
G.1.5 Adapter Expansion PROM . G-6
G.1.6 Local RAM . G-7

APPENDIX H VMA-200E VME-bus Slave Interface
H.1 VMA-200E Pre-Installation Configuration. H-1

H.1.1 Slave Address Configuration . H-1
H.1.2 VMEbus Short A16 Address Space . H-2
H.1.3 VMEbus Identification PROM . H-3
H.1.4 Host Control Register . H-3
H.1.5 VMEbus A32 Long Slave Address Space . H-4
H.1.6 VMEbus Interrupter . H-4
H.1.7 VME64 Master Mode. H-5

APPENDIX I MCA-200 Micro Channel Bus Slave Interface
I.1 Slave Interface. I-1
I.2 Board Control Register . I-2
I.3 Local Memory. I-3
I.4 Prom Data . I-3

APPENDIX J SBA-200 SBus Slave Interface
J.1 Slave Interface. .K-1
J.2 SBus Boot PROM .K-1
J.3 Board Control Register .K-2

J.3.1 Local Memory. .K-2

APPENDIX K ESA-200 EISA Bus Slave Interface
K.1 Slave Interface. L-1

K.1.1 EISA bus Configuration PROM . L-1
K.1.2 Contents of the ESA-200 Configuration PROM . L-2
K.1.3 Memory Base Address Register . L-3
K.1.4 Board Control Registers . L-4
TOC - 2 Programmer’s Reference Manual for AALI Interface

Table of Contents
APPENDIX L GIA-200 GIO Bus Slave Interface
L.1 Slave Interface M-1

L.1.1 Memory Base Address. M-1
L.2 Board Control Register . M-2

APPENDIX M PCA-200 PCI Bus Slave Interface
M.1 Slave Interface . N-1

M.1.1 Configuration Space Registers . N-1
M.1.2 Board control register. N-3
M.1.3 Serial Number PROM . N-3
M.1.4 Local memory . N-4
M.1.5 Clear PCI bus interrupt . N-4
TOC - 3Programmer’s Reference Manual for AALI Interface

Table of Contents
TOC - 4 Programmer’s Reference Manual for AALI Interface

Table of Contents

List of Figures
CHAPTER 1 Introduction

CHAPTER 2 PDU Transmission and Reception
Figure 2.1 Transmit PDU Descriptor (Tpd) & Tpd DMA Address Encoding 2-1
Figure 2.2 Rate Control as Data and Idle Cells. 2-3
Figure 2.3 Transmit Queue Snapshot One . 2-4
Figure 2.4 Transmit Queue Snapshot Two . 2-5
Figure 2.5 Receive Queue . 2-7
Figure 2.6 Buffer Queue. 2-11

CHAPTER 3 Commands

CHAPTER 4 Initialization
Figure 4.1 Host -CP Shared Memory Offsets . 4-5
TOC - 5Programmer’s Reference Manual for AALI Interface

Table of Contents

List of Figures
TOC - 6 Programmer’s Reference Manual for AALI Interface

Table of Contents

List of Tables
Table A.1 Minimum DMA Requirements 200 Series Adapters A-1
Table D.1 SDC SBus Slave Address Map . D-1
Table D.2 Host Control Register bit definitions . D-2
Table D.3 SBus Burst transfer configuration register . D-2
Table D.4 SBus Interrupt level selection register. D-3
Table E.1 I/O Address Map for EBI chip .E-1
Table E.2 Host Control Register bit definitions .E-1
Table E.3 High Base Address Register .E-3
Table E.4 Low Base Address Register .E-3
Table F.1 Slave Address Space .F-1
Table F.2 Host Control Register .F-2
Table F.3 PROM Address Map .F-3
Table G.1 Slave Address Space . G-1
Table G.2 Configuration Registers . G-2
Table G.3 PBI Configuration . G-2
Table G.4 Host Control Register . G-5
Table H.1 Short Base Address Configuration . H-2
Table H.2 Device Access Decoding Information . H-2
Table H.3 Host Control Register . H-3
Table H.4 A32 Base Addressing. H-4
Table H.5 Interrupt Request Level . H-5
Table H.6 VME64 Master Mode Selector . H-5
Table I.1 I/O Space . . . I-1
Table I.2 Board Control Registers . I-2
Table I.3 PROM Attributes . I-3
Table I.4 PROM Contents . I -4
Table K.1 Slave Interface Addresses . K-1
Table K.2 Board Control Registers . K-2
Table L.1 Slave Access Address Map .L-1
Table L.2 EISA Base Address for the i960 RAM .L-3
Table L.3 Memory Base Address Register, High Slice .L-3
Table L.4 Memory Base Address Register, Low Slice .L-3
Table L.5 Board Control Registers .L-4
Table M.1 Slave Interface Addresses . M-1
Table M.2 Board Control Registers . M-2
Table N.1 Board Control Registers . N-3
TOC - 7Programmer’s Reference Manual for AALI Interface

Table of Contents

List of Tables
TOC - 8 Programmer’s Reference Manual for AALI Interface

Preface

P
reface
Preface

Technical Support

If your equipment is under warranty or a support contract with FORE Systems, please
reference the following information for technical support issues.
In the U.S.A., you can contact FORE Systems’ Technical Support by any one of four
methods:

1. If you have access to Internet, you may contact FORE Systems’ Technical
Support via E-Mail at the following address:

support@fore.com

2. You may FAX your questions to “support” at:

412-742-7900

3. You may send questions, via U. S. Mail, to the following address:

FORE Systems, Inc.
1000 FORE Drive

Warrendale, PA 15086-7502

4. You may telephone your questions to “support” at:

1-800-671-FORE(3673)

or

412-635-3700

Technical support for non-U.S.A. customers should be handled through your local
distributor.
When contacting Technical Support, please be prepared to provide you customer sup-
port ID number, the serial number(s) of the product(s) and as much information as
possible describing your problem or question.
 iProgrammer’s Reference Manual for AALI Interface

Preface
Typographical Styles

Throughout this manual, specific commands to be entered by the user appear on a
separate line in bold typeface. In addition, use of the Enter or Return key is repre-
sented as <ENTER>. The following example demonstrates this convention:

cd /usr/FORE <ENTER>

Commands, parameters, menu items, or file names that appear within the text of this
manual are represented in the following style: “...the Configure button will access
the next menu item.”

As in the following example, any messages or code appearing on a screen will appear
in Courier font to distinguish this text from the rest of the text.

 Are all four conditions true?
ii Programmer’s Reference Manual for AALI Interface

Preface

P
reface
Important Information Indicators

To call your attention to safety and otherwise important information that must be
reviewed to ensure correct and complete installation, as well as to avoid damage to
the adapter or your system, FORE Systems utilizes the following WARNING/CAU-
TION/NOTE indicators.

WARNING statements contain information that is critical to the safety of the operator
and/or the system. Do not proceed beyond a WARNING statement until the indi-
cated conditions are fully understood or met. This information could prevent serious
injury to the operator and/or damage to the adapter, the system, or currently loaded
software, and will be indicated as:

WARNING! Hazardous voltages are present. To lessen the risk of
electrical shock and danger to personal health, follow
the instructions carefully.

Information contained in CAUTION statements is important for proper installation/
operation. Compliance with CAUTION statements can prevent possible equipment
damage and/or loss of data and will be indicated as:

CAUTION You risk damaging your equipment and/or software if
you do not follow these instructions.

Information contained in NOTE statements has been found important enough to be
called to the special attention of the operator and will be set off from the text as fol-
lows:

NOTE: Steps 1, 3, and 5 are similar to the installation for the
computer type above. Review the previous
installation procedure before installation in your
particular model.
 iiiProgrammer’s Reference Manual for AALI Interface

Preface
iv Programmer’s Reference Manual for AALI Interface

Introduction

Introd
uction
CHAPTER 1 Introduction

1.1 Introduction

This document specifies an ATM Adaptation Layer Interface (AALI) for host device
drivers and signaling protocol modules. The AALI is a programming interface which
is built upon the FORE Systems 200-series hardware, specifically, the on-board RAM
and the board control register (BCR).

This document refers to a 200-series adapter and the firmware executing on the 200-
series as the cell processor (CP).

1.1.1 Overview

The CP implements the AAL4 and AAL5 protocol standards. A null AAL interface is
also available, providing access to the ATM layer. This interface allows complete 53-
byte ATM cells to be transferred to and from the host.

Communication between the host processor and the CP is primarily through shared
CP memory and host memory. CP to host interrupts can also be enabled. The CP
accesses host memory using bus master direct memory access (DMA). The host uses
memory-mapped accesses to write the CP memory and the BCR. The CP memory
only supports 32-bit word accesses.

The CP is capable of scatter/gather DMA, allowing the host buffers to be discontigu-
ous. The buffer descriptors allow cell-payloads to be transferred to and from the host
operating systems' native network buffers. The CP does not buffer cell-payloads in CP
memory, instead they are transferred to and from the network using fly-by DMA.

CAUTION This document describes a specific version (1.8) of the
AALI firmware. The driver developer is cautioned
that the versions of header files that are being used to
build a driver must match the version of the AALI
firmware that is being used.
1 - 1Programmer’s Reference Manual for AALI Interface

Introduction
1.2 CP and Host Interaction

A series of CP resident queues are used by the host to initiate operations:

• PDU receive queue
• PDU transmit queue
• Command queue
• Receive buffer supply queues

Queue accesses by the host are limited to a single write-only access per operation. For
example, to transmit a PDU, the host writes a single pointer to the tail of the transmit
queue. Host to CP interrupts are not used to notify the CP of a host-initiated opera-
tion, instead the CP polls each queue head.

Two types of queues exist. They differ only in the location of the (I/O block). The
transmit, receive and buffer supply queues reference a host resident I/O block, while
the command queue has a CP resident I/O block.

All queues reference a location in host memory where a queue status entry is main-
tained. The host initializes the status word before initiating an operation and the CP
overwrites the status word on completion. The host uses the value of the status word
to determine if an operation has completed and whether a queue is full or not-full
before initiating an operation. The status word must be four byte aligned in host
memory.

The CP writes stat_complete to the status word on completion and may logically or
stat_error with stat_complete if an error has occurred (i.e.
(stat_complete|stat_error)).

enum status {

stat_pending= 0x01,/* initial status (written by host) */

stat_complete= 0x02,/* completion status (written by cp) */

stat_free= 0x04,/* initial status (written by host) */

stat_error= 0x08/* completion status (written by cp) */

};

typedef enum status Status;
1 - 2 Programmer’s Reference Manual for AALI Interface

Introduction

Introd
uction
1.3 Host Resident Block

The transmit, receive and buffer supply queues have a host resident I/O block. For
these three types of queues, a single queue entry has the following structure:

struct queue_entry {

Haddr ioblock; /* host DMA address of i/o block */

Haddr stataddr; /* host DMA address of completion status */

};

typedef volatile struct queue_entry Qcard;

The ioblock member can reference a transmit PDU descriptor (Tpd), a receive PDU
descriptor (Rpd) or a receive block descriptor (Rbd) located in host memory. The
stataddr member references a location in host memory where the CP can write com-
pletion status. Both the ioblock and stataddr members reference a location in host
memory. This address must be accessible from the CP side of the hosts I/O bus via
DMA.

Below is a general description of CP and host interaction. See the section on specific
queue types for more details.

• The host maintains a host resident tail pointer to each queue and the CP
maintains a CP resident head pointer. For each CP resident queue entry, the
host must maintain a host resident status word. Each queue wraps around
from the end to the beginning forming a logical ring.

• For each queue entry, the host initializes the host resident status word to
stat_free. The host then writes the stataddr member of the CP resident
queue entry with the DMA address of that status word. This should be done
only once at initialization (i.e. the value of the stataddr member remains con-
stant).

• To initiate an operation, the host first initializes the host resident status word
to stat_pending and then writes the ioblock member of the queue entry
with the DMA address of the host resident I/O block. The host then advances
its head pointer. It is the act of writing the I/O block entry with a new address
that signals to the CP that the queue entry is ready for processing.
1 - 3Programmer’s Reference Manual for AALI Interface

Introduction
• The CP notices that the ioblock member of the queue entry has changed and
starts the operation associated with that queue. At the end of the operation,
the CP will zero the ioblock member of the queue entry. It will then over-
write the status word with stat_complete using the DMA address found in
the stataddr member of the queue entry. If the queue is the receive queue or
a command queue and interrupts are not masked then the host is interrupted.

NOTE: The CP zeros the ioblock member of the queue entry
to recognize a queue empty condition. The host
should never read CP memory to determine when the
CP has completed an operation but should read the
host resident status word. This CP action is docu-
mented only to aid in host device driver debugging.

1.3.1 Queue Scheduling

In addition to the various shared memory queues the CP also examines the network
receive FIFO for available cells. The receive FIFO is treated as yet another queue by
the CP. The receive FIFO is 16K deep and can hold up to 290 host formatted cells.

If cells are available then some number of cells are transferred to host memory before
scanning the other queues.

The CP queues are serviced in the following order:

1. Buffer resupply queue

2. Network cell receive queue

3. PDU transmit queue

4. Host command queue
1 - 4 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
CHAPTER 2 PDU Transmission and Reception

2.1 PDU Transmission

The host transmits a PDU by first initializing a host resident transmit PDU descriptor
(Tpd), then setting the host resident status word to stat_pending and finally writing
the transmit queue with the DMA address of the Tpd.

The size of a Tpd must be a multiple 32 bytes and be aligned on a 32 byte boundary.
The least significant 5 bits of the DMA address are used by the host to encode the size
of the Tpd in 32 byte blocks. See Figure 2.1.

Figure 2.1 - Transmit PDU Descriptor (Tpd) & Tpd DMA Address Encoding

For each PDU segment, data buffering addresses and lengths are encoded in a Tsd.
The host must ensure that data for each segment starts on a 32-bit word address and
that the length of each segment is a multiple of four bytes.

2.1.1 Tsd Description

Each PDU segment is described by a Tsd.

struct transmit_segment {

Haddr buffer; /* transmit buffer DMA address */

int length; /* number of bytes in buffer */

};

typedef struct transmit_segment Tsd;

DMA Address of Tpd Size

VPI VCI

AAL nseg PDU Length

Rate Control Information

DMA Address of buffer

Length of Buffer

DMA Address of buffer

Length of Buffer

Length of Buffer

DMA Address of buffer
2 - 1Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
2.1.2 Tpd Description

The entire PDU to be transmitted is described by a Tpd. The first word of the Tpd
contains the VC used to transmit this PDU.

The first four bytes of the Tpd (atm_header) are a representation of the ATM Header
that will be used to transmit cells for the PDU. It is in the form of a standard ATM
Header minus the HEC byte. The fields of this header used during PDU transmission
are the VPI and VCI fields.

/*

 * Tsd specification (spec) word format:

 *

 * 31 28 24 23 16 15 8 7 0

 * +----+---+--------+---------+--------+

 * |intr|aal|num seg | PDU len |

 * +----+---+--------+---------+--------+

 *

 * Transmit ioblock member encoding (the tpd

 * dma address written to the transmit queue).

 *

 * 31 5 4 3 2 1 0

 * +---------------------+-+-------+

 * | ioblock addr |R| N |

 * ---------------------------------

 *

 * R = reserved (zero)

 * N = size of Tpd in 8 word blocks

 */

struct tx_pd {

 u_int atm_header;

 u_int spec;

 u_int rc_stream_desc; /* Number of data cells/interval */

 u_int pad;

 Tsd segment[NUM_TXSEG];

};

typedef struct tx_pd Tpd;
2 - 2 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
2.1.3 Transmit Process

When issuing a transmit the host checks the status of any previous transmit requests
by examining the host resident status word associated with that request for the value
stat_complete. If complete, the host can free host resources used for the transmitted
PDU. One factor in determining the transmission speed is rate control.

Rate control information is encoded as a thirty-two bit field comprised of two sixteen
bit sub-fields which form a ratio of data cells to idle cells. The high order sixteen bits
represent the number of data cells to send, and the low order sixteen bits specify the
number of idle cells. For example, a value of 0x000a0008 instructs the firmware to
transmit ten data cells and eight idle cells per eighteen cells (shown graphically in Fig-
ure 2.2). Specifying 0x0 for both sixteen bit fields disables the rate-control mechanism.
Rate control is applied on a per-TPD basis.

Figure 2.2 - Rate Control as Data and Idle Cells

Figure 2.3 depicts a 3-element transmit queue where the host has issued a transmit for
Tpd 3, advanced the request pointer, issued a transmit for Tpd 1, and advanced the
request pointer again. The CP has tranmitted the PDU referenced by Tpd 3 and Tpd 1
is still pending.

As you can see, the host has a queue which is needed to keep track of the queue the
CP references to emit PDUs. The host transmit queue is set up during initialization to
contain pointers to all the relevent pieces of data, of each transmit element. For each
QHOST element, there is an associated Tpd, a pointer to a corresponding QCARD ele-
ment (which exists on the transmit queue of the CP), and a pointer to the status word
element (host-resident in this example). Once these essential pieces are set up, no
reallocation is performed; i.e., each free Tpd can be thought of as a fixed sized con-
tainer, holding PDU information. When the Tpd container has been filled, the status
word for that Tpd is set to STAT_PENDING, and the DMA address of the Tpd is
transferred to the CP’s transmit queue. When this DMA address is set, the CP will
then recognize that the host has given another PDU for transmit. (Note that the sta-
tus word DMA addresses within the CP’s transmit queue are never changed after ini-
tialization.)

0x000a 0008Hexadecimal

Decimal 10
Data
Cells

8
Idle
Cells

Equivalent

0x0000 0000Hexadecimal

Decimal 0
Data
Cells

0
Idle
Cells

Equivalent

Transmit 10 Data, 8 Idle Cells Disable Rate Control
Transmit 0 Data, 0 Idle Cells
2 - 3Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
Figure 2.3 - Transmit Queue Snapshot One

ENTRY #1

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

ENTRY #2 ENTRY #3

TPD 2

TPD 3

CP MEMORY

IOBLK
STATADDR

IOBLK

IOBLK

STAT_PENDING
STAT_FREE

STAT_COMPLETE

QHOST

REQUEST CONFIRM

STATADDR

STATADDR

QHOST QHOST

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

TPD 1
CP’S TRANSMIT QUEUE

designates virtual address

designates DMA address

designates NULL pointer

HOST MEMORY
HOST’S TRANSMIT QUEUE
2 - 4 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
Figure 2.4 shows the state of the transmit queue after the CP has transmitted Tpd 1
and the host has cleaned up after Tpd 3 and Tpd 1, advancing the confirmation
pointer twice. The host has also issued a transmit for Tpd 2 advancing the request
pointer once.

Figure 2.4 - Transmit Queue Snapshot Two

ENTRY #1

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

ENTRY #2 ENTRY #3

HOST MEMORY

TPD 2

TPD 3

CP MEMORY STAT_FREE

STAT_PENDING

STAT_FREE

QHOST

REQUESTCONFIRM

QHOST QHOST

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

TPD 1

HOST’S TRANSMIT QUEUE

CP’S TRANSMIT QUEUE

IOBLK
STATADDR

IOBLK

IOBLK

STATADDR

STATADDR

designates virtual address

designates DMA address

designates NULL pointer
2 - 5Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
2.2 PDU Reception

The host enables PDU reception by initializing the receive queue, supplying the CP
with buffers and activating a VCI (i.e. opening an ATM connection).

The CP carries out the reassembly of cells into a PDU, buffering the cell-payloads in
host memory. For each partially reassembled PDU, the CP maintains a CP resident
copy of a receive PDU descriptor (Rpd). An Rpd specifies the VPI/VCI, PDU length
and buffers comprising a PDU. The CP copy of the Rpd is initialized by the CP during
the reassembly process. When the last cell of a PDU is transferred to host memory,
then the Rpd is also transferred to host memory and the host is interrupted.

For connections with an AAL of type null, cell payloads will be written contiguously
into the reassembly buffers. For this AAL type, the CP implements header coalescing,
where cells arriving with identical headers are grouped together and delivered to the
host as a batch. The maximum number of cells in a group is controlled by the MTU (or
batch size) for that connection. So the net effect is that the host is notified that cells
have arrived on an AAL null connection only when either a cell arrives on that con-
nection with a different header, or the number of cells which have arrived equals the
current batch size.

Each entry of the receive queue is initialized by the host to reference a location in host
memory equal to the size of an Rpd. This location can be viewed as a fixed sized con-
tainer supplied by the host containing uninitialized values. The Rpd container will
eventually hold an initialized Rpd put there by the CP. See Figure 2.5.

As with the transmit queue paradigm, PDU reception is accomplished via the interac-
tion of a CP receive queue and its counterpart within the host driver. Each QHOST
entry within the host’s receive queue contains pointers to pairings of status words
and Rpd structures. When a status word is set to STAT_COMPLETE, the correspond-
ing Rpd contains a PDU that has been received by the CP; otherwise, the status word
isn’t set to completion and the Rpd is empty.
2 - 6 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
Figure 2.5 - Receive Queue

ENTRY #1

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

ENTRY #2 ENTRY #3

HOST MEMORY

RPD 2

RPD 3

CP MEMORY

STAT_FREE

STAT_FREE

STAT_COMPLETE

QHOST

HEAD

QHOST QHOST

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

RPD 1

HOST’S RECEIVE QUEUE

CP’S RECEIVE QUEUE

IOBLK

STATADDR

IOBLK

IOBLK

STATADDR

STATADDR

designates virtual address

designates DMA address

(EMPTY)

(EMPTY)

ATM_HEADER
NSEG (2)
HANDLE
LENGTH
HANDLE
LENGTH

PDU
SEGMENT

PDU
SEGMENT
2 - 7Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
The length of the receive queue is configurable by the host and represents the maximum
number of PDUs that can be queued for the host before the CP starts discarding cells.

The host maintains a host resident head pointer to the receive queue and the CP main-
tains a CP resident tail pointer to the receive queue.

A receive PDU interrupt indicates that one or more PDUs are ready to be processed by
the host. The host need only check the head of queue status word for the value
stat_complete. After processing a PDU, the host must then make a new Rpd con-
tainer available to the CP by re-writing the receive queue with the DMA address of
the same or a new Rpd container.

2.2.1 Receive Buffer Descriptors

The CP can support multiple host buffer schemes (e.g. BSD mbuf, System V STREAM
buffer, frame buffer, etc.) through a host buffer independent buffer descriptor. The
buffer descriptor gives the CP a uniform view of all host buffer schemes.

A receive buffer descriptor contains two parts, referencing the same host buffer struc-
ture. One part is the DMA address used by the CP for writing cell-payloads to host mem-
ory. The second part is a handle which is used by the host CPU to locate the buffer while
processing a received PDU. The handle part migrates from the host supplied buffer
descriptor to a receive PDU descriptor. It is simply passed along during the reassembly
process, uninterpreted by the CP.

struct receive_buffer_descriptor {

 Haddr handle; /* host CPU control address of buffer */

 Haddr buffer; /* DMA address of host buffer */

};

typedef struct receive_buffer_descriptor Rbd;

2.2.2 Receive Buffer Schemes and Sizes

The CP maintains a buffer pool for each buffer scheme and buffer size (for example,
number of pools = number of schemes * number of magnitudes). For each connection
opened, the host specifies which buffer scheme the CP must use to buffer the cell-pay-
loads for incoming cells.

The binding of a particular buffer scheme (Bscheme) to a particular host buffer
scheme is done by the host with the activate command. The CP has no knowledge of
the binding. For example bscheme_one may be bound to BSD mbufs or System V
STREAMs buffers.

Host buffer schemes The firmware has a uniform view of all host buffer schemes through
the buffer descriptors. (e.g. Bscheme may be designated by the host
to be an mbuf/loaned mbuf, a streams buffer etc.)

enum buffer_scheme {

bscheme_one = 0,

bscheme_two = 1

};

typedef enum buffer_scheme Bscheme;

Within each host buffer scheme, the CP will optionally support multiple buffer magni-
tudes. Currently small and large buffers are supported. The host chooses the length of
small buffers and large buffers with the initialize command. All buffers for a particular
2 - 8 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
buffer scheme and magnitude must be the same size. It is recommended that for effi-
ciency reasons these be a multiple of 48 bytes.

Host buffer magnitude What is designated to be small or large by the host is arbitrary. (They
can be equal).

enum buffer_magnitude {

bmag_small = 0,

bmag_large = 1

};

typedef enum buffer_magnitude Bmag;

The use of small buffers can be disabled by the host at initialization. If small buffers
will be used, then the CP allocates one to hold the first cell-payload of a new PDU. If
the remaining cells of the PDU will not fit into the original small buffer, then large
buffers are used to complete the reassembly process.

If the CP runs out of small buffers for first cell-payload processing, then it will attempt
to allocate a large buffer. However, if the CP has made the transition from using small
buffers to large buffers and then runs out of large buffers, it will not attempt to allo-
cate small buffers, instead the PDU reassembly process is aborted.

2.2.3 Receive PDU Descriptors

Receive PDU descriptors (Rpd) reside in host memory. They are supplied by the host
and used by the CP. An Rpd can be in one of two states; empty or not-empty. When
empty, it can be viewed as a fixed size container supplied by the host containing
uninitialized values. In the not-empty state, the Rpd has been initialized by the CP
(DMA write) with values that describe a received PDU.

The size of an Rpd is fixed at eight 32-bit words (3 receive segments). The host can
extend the size of an Rpd with the initialize command in increments of eight 32-bit
words (4 receive segments). The extension is based of the size of host buffers and the
MTU size. For example, if the largest MTU accepted is 9180 bytes and a small buffer is
256 bytes and a large buffer is 4K, then the Rpd would have to be extended.

For example:

Therefore, 3 receive segments would be insufficient.

struct rx_pd {

u_int atm_header;

int nseg;

Rsd segment[NUM_RXSEG];

};

typedef struct rx_pd Rpd;

256 2 4K×+() 9180<
2 - 9Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
The receive segment descriptor (Rsd) describes a segment of a received PDU. The
handle part is used by the host to locate the host buffer while processing a received
PDU. The handle is passed along by the CP from a host supplied receive buffer
descriptor (Rbd) to the Rsd.

struct receive_segment {

 Haddr handle; /* receive buffer handle */

 int length; /* number of bytes in buffer */

};

typedef struct receive_segment Rsd;

2.2.4 Buffer Supply Protocol

For each buffer scheme and magnitude, there is a supply queue and a CP resident
buffer descriptor pool (see Figure 2.6). The host supplies the new buffer descriptors to
the CP in fixed size blocks of buffer descriptors. The ioblock member of the queue
entry points to an area in host memory that contains a fixed number of Rbd's.

If there are entries in particular buffer supply queue and the CP has space in the corre-
sponding descriptor pool, the CP will transfer the block of descriptors to that pool.
The CP then notifies the host that it has read the set of Rbd's by writing
stat_complete to the host status word associated with that buffer resupply queue
entry.

This protocol allows the CP to maintain a group of usable buffer segments in an area
that is quickly accessible to it while allowing the host to supply the CP with more
descriptors when convenient (e.g. in the host interrupt routine and/or when transmit-
ting a PDU).

The length of each supply queue and the number of descriptors per block are config-
urable by the host with the initialize command. The supply queue and transmit queue
function identically with the exception that the ioblock member references a host res-
ident supply block instead of a Tpd.
2 - 10 Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception

PD
U

 Transm
ission

A
nd

 R
eception
Figure 2.6 - Buffer Queue

ENTRY #1

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

ENTRY #2 ENTRY #3

HOST MEMORY

CP MEMORY

STAT_COMPLETE

STAT_COMPLETE

STAT_PENDING

QHOST

HEAD

QHOST QHOST

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

CARD_QENTRY

CARD_STATADDR

IOBLK

NEXT

BUFFER QUEUE

BUFFER QUEUE

IOBLK

STATADDR

IOBLK

IOBLK

STATADDR

STATADDR

designates virtual address

designates DMA address

designates NULL pointer

BUFFER

BUFFER

BUFFER

HANDLE

BUFFER

HANDLE

HANDLE

BUFFER

BUFFER

RBD3

=

 S
U

P
P

LY
_B

LK
S

IZ
E

BUFFERS
2 - 11Programmer’s Reference Manual for AALI Interface

PDU Transmission and Reception
2 - 12 Programmer’s Reference Manual for AALI Interface

Commands

C
om

m
and

s

CHAPTER 3 Commands

The command queue is slightly different than the other queues. Instead of the queue
entry referencing an I/O block in host memory, the I/O block is located within the
command queue. The host writes the command arguments directly to the queue
entry. Each command queue entry has the following structure:

union command {

Opcode op;

Activate_block activate_param;

Deactivate_block deactivate_param;

Request_stats stats_param;

Oc3_reg_op oc3_reg_param;

int force_multiple4[4]; /* gcc960 does this */

};

typedef volatile union command Command;

struct command_block {

Command cmd;

Haddr stataddr;

int force_multiple4[3]; /* gcc960 does this */

};

typedef volatile struct command_block Qcard_cmd;

The host issues commands by first writing the command arguments into the queue
entry at the head of the queue and then by writing the opcode. The order is important
because the CP polls the op location within the command block in order to detect the
presence of a new command. When an opcode is detected, the command arguments
are assumed to be valid. On command completion, the CP notifies the host by writing
stat_complete to the host status word (stataddr). The host can request that the CP
interrupt the host on command completion. Any opcode can be modified with the
opcode modifier op_interrupt_sel by logically ORing it with an opcode (e.g.
(op_activate | op_interrupt_sel).
3 - 1Programmer’s Reference Manual for AALI Interface

Commands
After completion of a command, the CP zeros the op member of a command queue
entry in order recognize a queue empty condition. This is documented to aid in device
driver development. The host should not read CP memory to determine when the CP
has completed a command but should either request an interrupt or read the host res-
ident status word.

/*
 * Command opcodes.

 */

enum opcodes {

op_initialize = 0x01, /* init 200-series */

op_activate_vcin = 0x02, /* activate incoming VCI */

op_activate_vcout = 0x03, /* activate outgoing VCI */

op_deactivate_vcin = 0x04, /* deactivate incoming VCI */

op_deactivate_vcout = 0x05, /* deactivate outgoing VCI */

op_request_stats = 0x06, /* return AAL and buffer stats */

op_oc3_set_reg = 0x07, /* modify SUNI OC3 register */

op_oc3_get_reg = 0x08, /* return SUNI OC3 registers */

op_zero_stats = 0x09, /* zero card statistics */

op_get_prom_data = 0x0a, /* return expansion rom info */

op_setvpi_bits = 0x0b /* set x bits of those decoded by*/

/* the firmware to be low order */

/* bits from the VPI field of the*/

/* ATM cell header. */

op_interrupt_sel = 0x80 /* interrupt select */

};

typedef volatile enum opcodes Opcode;

The “op_get_prom_data ” command is specific only to a PCI card implementation.
3 - 2 Programmer’s Reference Manual for AALI Interface

Commands

C
om

m
and

s

3.1 Activate VCIN Command

This command is used by the host to open an incoming ATM connection. Once a con-
nection is opened, the CP will start reassembling cells having opened the vpvc into
PDUs.

The vpvc is used by the host to specify the VPI and VCI to be used for the connection.
The VPI must be zero. The VCI must be in the range of zero to the number of connec-
tions supported. The host uses the initialize command to select the number of connec-
tions supported.

The host also selects the AAL for the incoming cell stream and the buffer scheme to be
used to buffer cell-payloads during the reassembly process.

For AAL null connections, the MTU is the amount of data (in bytes) that should be
received before notifying the host. Since AAL null cells are grouped into batches and
then delivered to the host, the MTU is alternatively referred to as the batch size.

The batch size of an AAL null connection may be changed while the connection is
open by simply issuing another Activate VCIN command and specifying a new
MTU. Issuing an Activate VCIN command for a connection which is already open is
only permitted for AAL null connections.

/*

 * Activate VCI; used by the host to enable the reassembly

 * of cells with the specified VCI. Op word format:

 *

 * 31 24 23 16 15 8 7 0

 * +--------+--------+---------+--------+

 * |reserved| bscheme| aal | opcode |

 * +--------+--------+---------+--------+

 */

struct activate_block {

 Opcode op;

 Vpvc vpvc;

 u_int mtu;/* For AAL null only */

};

typedef volatile struct activate_block Activate_block;
3 - 3Programmer’s Reference Manual for AALI Interface

Commands
3.2 Deactivate VCIN Command

This command is used by the host to close an incoming ATM connection. Cells which
arrive for the specified VCI after the connection is closed are discarded.

/*

 * Deactivate VCI command block.

 */

struct deactivate_block {

 Opcode op;

 Vpvc vpvc;

};

typedef volatile struct deactivate_block Deactivate_block;

3.3 Deactivate VCIO Command

This command is reserved for future use.

3.4 Activate VCIO Command

This is command is reserved for future use.
3 - 4 Programmer’s Reference Manual for AALI Interface

Commands

C
om

m
and

s

3.5 SUNI OC3 Set Register Command

This command is used by the host to set the value of a SUNI OC3 register (see
PMC-Sierra, Inc. PM5345 SUNI Saturn User Network Interface).

The oc3_op field of Oc3_reg_op differs from other firmware commands with
opcodes in that oc3_op is used to encode more information than just the specified
operation. This field is used to encode a mask, value and register as well as the
intended operation.

To alter the value of a SUNI register, the host must set opcode to op_oc3_set_reg
and reg to the appropriate SUNI OC3 register number (refer to comment titled ‘OC3
Register Command’). Both the value and mask fields must also be set in the follow-
ing way:

The mask field specifies which bits of the value field are interpreted by the firm-
ware. For example, if only the least significant two bits of a write to reg should be
modified, set mask to 0x3.

The value field specifies the logical value to place at each bit position of reg that
mask states is interpreted. This scheme facilitates the setting of specific bit positions
within each register without the need to read, modify, then write the specified regis-
ter.

The oc3_buff field is unused for a set operation.

/*

 * OC3 Register Command: used by the host to get/set specific

 * SUNI register values. Op word format:

 *

 * 31 24 23 16 15 8 7 0

 * +--------+--------+---------+--------+

 * | mask | value | reg | opcode |

 * +--------+--------+---------+--------+

 */

struct oc3_reg_op {

 Opcode oc3_op;

 Oc3_reg_set200 *oc3_buff; /* DMA address of oc3 buffer */

};

typedef volatile struct oc3_reg_op Oc3_reg_op;

struct oc3_reg_set200 {

 u_int reg[128];

};

typedef struct oc3_reg_set200 Oc3_reg_set200;
3 - 5Programmer’s Reference Manual for AALI Interface

Commands
SUNI Write Example:

Set the two high order bits of SUNI reg 0x34 to 0, not altering the low order 6 bits.

mask = 0xC0 (high order 2 bits set to 1)

value = 0x00 (high order 2 bits set to 0)

reg = 0x34

opcode = op_oc3_set_reg

For example, only consider the two high order bits of value when writing to register
0x34 leaving the other 6 bits alone, and the value of these two bits are 0.
3 - 6 Programmer’s Reference Manual for AALI Interface

Commands

C
om

m
and

s

3.6 SUNI OC3 Get Register Command

This command is used by the host to retrieve the value of SUNI OC3 registers (see
PMC-Sierra, Inc. PM5345 SUNI Saturn User Network Interface).

To retrieve the value of the SUNI registers, the host must set opcode to
op_oc3_get_reg. The reg, value, and mask fields are not interpreted.

All registers are returned into the buffer pointed to by oc3_buff. Unimplemented
registers will have the value -1. oc3_buff must be 32 byte aligned.

/*

 * OC3 Register Command; used by the host to set and

 * retrieve SUNI OC3 register values. Op word format:

 *

 * 31 24 23 16 15 8 7 0

 * +--------+--------+---------+--------+

 * | mask | value | reg | opcode |

 * +--------+--------+---------+--------+

 *

 */

struct oc3_reg_op {

 Opcode oc3_op;

 Oc3_reg_set200 *oc3_buff; /* DMA address of oc3 buffer */

};

typedef volatile struct oc3_reg_op Oc3_reg_op_t;

struct oc3_reg_set200 {

 u_int reg[128];

};

typedef struct oc3_reg_set200 Oc3_reg_set200;
3 - 7Programmer’s Reference Manual for AALI Interface

Commands
3.7 Statistics Command

This command causes the CP to transfers the contents of the CP resident Atm_stats
structure to host memory. The stats_buff structure must be thirty-two byte aligned
in host memory.

/*

 * Request statistics command block.

 */

struct request_stats {

 Opcode op;

 Haddr stats_buff; /* DMA address of stats buffer */

};

typedef volatile struct request_stats Request_stats;

/*

 * Statistics.

 */

struct phy_4b5b_stats200 {

 u_long crc_header_errors; /* cells with bad header CRC */

 u_long framing_errors; /* cells with bad framing */

 u_long pad[2]; /* pad to gcc960 boundary */

};

typedef struct phy_4b5b_stats200 Phy_4b5b_stats200;

struct phy_oc3_stats200 { /* OC3 PHY */

 u_int section_bip8_errors;/* section 8 bit interleaved parity */

 u_int path_bip8_errors; /* path 8 bit interleaved parity */

 u_int line_bip24_errors; /* line 24 bit interleaved parity */

 u_int line_febe_errors; /* line far end block errors */

 u_int path_febe_errors; /* path far end block errors */

 u_int corr_hcs_errors; /* correctable header check sequence */

 u_int ucorr_hcs_errors; /* uncorrectable header check sequence */

 u_int pad[1]; /* pad to gcc960 boundary */

};

typedef struct phy_oc3_stats200 Phy_oc3_stats200;

struct atm_stats200 { /* ATM layer */

 u_long cells_transmitted; /* cells transmitted */

 u_long cells_received; /* cells received */

 u_long vpi_bad_range; /* cell drops: VPI out of range */

 u_long vpi_no_conn; /* cell drops: no conn for VPI */

 u_long vci_bad_range; /* cell drops: VCI out of range */

 u_long vci_no_conn; /* cell drops: no conn for VCI */
3 - 8 Programmer’s Reference Manual for AALI Interface

Commands

C
om

m
and

s

 u_long pad[2]; /* pad to gcc960 boundary */

};

typedef struct atm_stats200 Atm_stats200;

struct aal0_stats200 { /* Null AAL */

 u_long cells_transmitted; /* cells transmitted */

 u_long cells_received; /* cells received */

 u_long cells_dropped; /* cells dropped */

 u_long pad[1]; /* pad to gcc960 boundary */

};

typedef struct aal0_stats200 Aal0_stats200;

struct aal4_stats200 { /* AAL4 */

 u_long cells_transmitted; /* cells xmited from PDUs */

 u_long cells_received; /* cells assembled in PDUs */

 u_long cells_crc_errors; /* payload CRC error count */

 u_long cells_protocol_errors; /* SAR or CS layer errors */

 u_long cells_dropped; /* cells dropped */

 u_long cspdus_transmitted; /* CS PDUs transmitted */

 u_long cspdus_received; /* CS PDUs received */

 u_long cspdus_protocol_errors;/* CS layer protocol errors */

 u_long cspdus_dropped; /* PDUs dropped (in cells) */

 u_long pad[3]; /* pad to gcc960 boundary */

};

typedef struct aal4_stats200 Aal4_stats200;

struct aal5_stats200 { /* AAL5 */

 u_long cells_transmitted; /* cells transmitted from SDUs */

 u_long cells_received; /* cells reassembled into SDUs */

 u_long congestion_experienced; /* CRC err & length wrong */

 u_long cells_dropped; /* PDUs dropped (in cells) */

 u_long cspdus_transmitted;/* CS PDUs transmitted */

 u_long cspdus_received; /* CS PDUs received */

 u_long cspdus_crc_errors; /* PDU CRC errors */

 u_long cspdus_protocol_errors; /* CS protocol errors */

 u_long cspdus_dropped; /* reassembled PDUs dropped */

 u_long pad[3]; /* pad to gcc960 boundary */

};

typedef struct aal5_stats200 Aal5_stats200;

struct auxiliary_stats200 {

 u_long small_b1_failed; /* rcv BD allocation failures */

 u_long large_b1_failed; /* rcv BD allocation failures */
3 - 9Programmer’s Reference Manual for AALI Interface

Commands
 u_long small_b2_failed; /* rcv BD allocation failures */

 u_long large_b2_failed; /* rcv BD allocation failures */

 u_long rpd_alloc_failed; /* rcv PDU allocation failures */

 u_long receive_carrier; /* no carrier = 0, carrier = 1 */

 u_long pad[2]; /* pad to gcc960 boundary */

};

typedef struct auxiliary_stats200 Auxiliary_stats200;

struct stats200 {

 Phy_4b5b_stats200 phy4b5b;

 Phy_oc3_stats200 phyoc3;

 Atm_stats200 atm;

 Aal0_stats200 aal0;

 Aal4_stats200 aal4;

 Aal5_stats200 aal5;

 Auxiliary_stats200 aux200;

};

typedef struct stats200 Stats200;
3 - 10 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization
CHAPTER 4 Initialization

This chapter provides some details on how the CP is loaded with the AAL interface
firmware and how that firmware is initialized.

4.1 Downloading the AAL Interface Firmware

Firmware images can be loaded using one of two methods. In the past (refer to any
ForeThought 4.0.x source distribution for more details), FORE’s drivers used a virtual
terminal interface to download the firmware through shared memory, byte by byte.
Briefly, after executing a series of self-tests the CP starts to execute a version of the
mon960 program from Intel. This software interacts with a “terminal” through a
“UART” (Universal Asynchronous Transmitter/Receiver). In the case of the FORE
CP, that UART is the soft uart implemented through shared memory.

To download a program onto the CP, a do command is sent to the CP over the soft
uart. This command instructs the mon960 program to accept a new executable image.
This image must be in b.out or Common Object File Format (COFF) format, and is
sent to the CP using the xmodem protocol--firmware images used in this method use
a .ucode extension. During the transmission, the format is translated to stripped
COFF format. After successful completion, mon960 is sent the go command. The CP
will then begin execution at the address provided as a parameter to this command.

The faster method, used by ForeThought 4.1 drivers, is to load the firmware directly
into the adapter card’s RAM--it was originally designed for use within the PC drivers.
In this case, no translations are necessary (beyond dealing with the “endianness” of
the target processor). Its method is implemented in a utility called ncomm, and is
described next.

4.1.1 Fast Downloading

A .bin file is a firmware image file that begins with a four word header, which defines
the following: a firmware identification number, its version, the offset from the top of
RAM where the firmware is to be loaded, and the entry point for the firmware. Load-
ing a .bin file into a FORE adapter card’s RAM requires essential three steps:

• Read the top four words into a data structure so that these values may be
used during the download procedure:

struct {
u_int32_t firmId; /* 0x65726f66 ==> “fore” */
u_int32_t firmVersion ID;
u_int32_t startOffset;
u_int32_t entryAddr;

} firmHeader;

int headSize = sizeof(firmHeader);

handle= OPEN(<device>.bin, “r”);
error= READ_FILE (handle, &firmHeader, headSize);

Any error checking can be done next using the first two fields in the header.
Note that the header is part of the image, and therefore must also be down-
4 - 1Programmer’s Reference Manual for AALI Interface

Initialization
loaded to the card.

• Transfer the header just read and the rest of the image into the card’s memory,
starting at the offset given in the header:

startP= au->au_ram + firmHeader.startOffset;
error = COPY(startP, &firmHeader, headSize);
iSize = firmSize - headSize;
error = READ_FILE(handle, startP+headSize, iSize);

• Because the host and the I960 may have different byte orderings, a reordering
of the entire file may be necessary. Specifically, big-endian hosts require a
reordering of each word because the file is read as bytes and written to RAM
as words. To reorder, swap bytes 0 and 3 and bytes 1 and 2 of the 4-byte word
(see SLAVE_XFER macro):

#if defined (SLAVE_SWAP_BYTES)
u_int32_t *swapp;

swapp = (u_int32_t *) startP;
for (i = 0 ; i < (long)(firmSize/sizeof(u_int32_t)
+ 1) ; i++) {

/* SLAVE_XFER is defined in driver/
fore_atm_drv.h */

SLAVE_XFER(*swapp, *swapp);
swapp++;

}
#endif

The last thing to do is to start the firmware’s execution. You can do this by issuing
characters into the monitor’s address location:

static u_int8_t *Hexchs = 0123456789ABCDEF”;

/* Send the firmware the start command (“go
<addr>“) */
put_char (‘\r’);
put_char (‘g’);
put_char (‘o’);
put_char (‘ ‘);

entryAddr = firmHeader.entryAddr;
entryAddr <== 16; /* only lower 2-bytes are signifi-
cant */
for (i = 4 ; i > 0 ; i--) {

put_char (Hexchs[(entryAddr & 0xf0000000) >>
28]);

get_char();
entryAddr <<= 4;

}
put_char (‘\r’);

At this point, wait for a period (check every 10 milliseconds for 5000 milliseconds, or
something more to your liking) for the monitor.bstat flag to be set to ‘cp_running’.
Fail if this takes too long.

4.1.2 Notes on the Firmware

Header files included as part of this package define structures used to interface to the
firmware. Therefore the structures defined in these headers must match those used
4 - 2 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization

internally by the firmware. The developer should use the firmware images included
as part of this package to ensure that these structures match.

Some manuals that may be of interest to developers are “I960 Processor Software Util-
ities User’s Guide” and “Using the GNU/960 Tools” available from Intel.

4.1.3 The Host/CP Endian Description

This description presupposes a host processor and associated memory and an cell
processsor with a local memory region. The host processor can access the cell proces-
sor local memory via a bus interface, and the cell processor can access the host mem-
ory also by a bus interface. All transfers on the bus occur as 32-bit (4-byte) words.
These transfers both begin and end on physical word boundaries in both the host and
cell processor memories. The host processor memory may be either little or big
endian byte order. (The cell processor memory regions are little endian byte order.)
The cell processor sends cells to and receives cells from the network interface as a
series of words.

The network interface transmits the bytes from each word to the physical layer and
receives the bytes into each word from the physical layer beginning with the most sig-
nificant byte and ending with the least significant byte. The bytes in an ATM cell pay-
load follow the order that those same bytes were in the original PDU buffer (which is
in the host processor memory).

If the host processor memory is defined as little endian byte order, the bus interface
must convert the bytes in words that are transferred between the host processor
memory and the cell processor. An example of a PDU transmission from a little
endian byte order memory will demonstrate why this is necesssary. Suppose a host
processor with little endian byte order memory. We would like to transmit a twelve-
byte buffer containing the string “Hello World!" that begins at a physical memory
word with address B.

Buffer in host processor memory:

B+00: 'H' B+04: 'o' B+08: 'r'
B+01: 'e' B+05: ' ' B+09: 'l'
B+02: 'l' B+06: 'W' B+10: 'd'
B+03: 'l' B+07: 'o' B+11: '!'

The cell processor will transfer this buffer to the network interface. Since the bus only
permits word transfers between the host processor memory and the cell processor
must read three words.

Words read by the cell processor from the host processor memory (little endian byte
ordering):

Most Least
significant bytes

Word 0: | 'l' | 'l'| 'e'| 'H' |
Word 1: | 'o'| ‘W' | ' '| 'o' |
Word 2: | '!'| 'd' | 'l'| 'r' |

These words are directly transferred into the network interface or transmission begin-
ning with the most significant byte of Word 0 and ending with the least significant
byte of Word 2. Thus the byte stream presented to the physical layer would be “lle-
HoW o!dlr“. This is not the defined output byte stream.

Since PDU transmission and reception represent the greatest volume of transfers
between the host processor and the cell processor, the bus interface is modified to
4 - 3Programmer’s Reference Manual for AALI Interface

Initialization
invert the byte order during a memory word read or write. In the previous example,
with the bus interface performing byte order inversion, the cell processor will read the
following three words:

Most Least
significant bytes

Word 0: | 'H' | 'e’| 'l'| 'l' |
Word 1: | 'o'| ‘ ' | 'W'| 'o' |
Word 2: | 'r'| 'l' | 'd'| '!' |

When these three words are transferred to the network interface, the byte stream pre-
sented to the physical layer would be “Hello World!”. This is the required output byte
stream.

There is a side-effect to the bus interface performing this byte order inversion: When
the host processor and cell processor exchange word data, a second byte order inver-
sion must be performed to restore the original value to the data word. By definition,
only the host processor will perform the byte order inversion operations (so that the
firmware on the cell processor can remain consistent for all implementations). For
example, the host processor initializes the firmware parameters, the opcode word
must be set to the value op_initialize (0x00000001). In order for the cell processor to
read the opcode word with the value op_initialize, the host processor must actually
store the value 0x01000000. During the read operation, the bus interface will invert
the byte order in this word. As a result, the cell processor will read the opcode word
with the value 0x00000001.

If the host processor memory is defined as big endian byte order, the bus interface
does not perform byte order version and no byte order inversions are required from
the host processor.

4.1 Downloading the AAL Interface Firmware

When the CP is first started during the power up cycle, it will run a number of simple
self-tests that are in ROM. After completion of these tests, the CP starts to execute a
version of the mon960 program from Intel. This software interacts with a "terminal"
through a "UART" (Universal Asynchronous Transmitter/Receiver). In the case of the
FORE CP, that UART is the soft uart implemented through shared memory.

To download a program on to the CP, a do command is sent to the CP over the soft
uart. This command instructs the mon960 program to accept a new executable
image. This image must be in COFF (Common Object File Format). It is sent to the CP
using the xmodem protocol. After successful completion, mon960 is sent the go com-
mand. The CP will start execution at the address provided as a parameter to this com-
mand.

For additional details on the latest release of the Intel i960 processor and the associ-
ated software, please refer to the applicable Intel documentation.
4 - 4 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization
4.2 The Cp_queue Structure

The Cp_queue structure is CP resident and is read by the host during the boot
sequence. After the boot sequence host accesses to the structure should be limited to
writes. These write operations are used to place new entries into the queues that are
used to initiate CP operations.

The host maintains host resident pointers to each of the CP resident queues. When ini-
tializing the queue pointers, the host treats all pointer members in the Cp_queue
structure as offsets from the beginning of CP memory (e.g. the host base address of CP
memory plus the value of transmit_queue yields the host addressable first entry of
the transmit queue). See Figure 4.1 for details.

Figure 4.1 - Host -CP Shared Memory Offsets

1st 1k Not used

Mon960com Structure
MON960COM_OFFSET

Mon960com.uart
Mon960com.bstat
Mon960com.version

shared_mem.h
board.h

aali.hCOMMON_ORIGIN
Cp_queue structure

Queue Offsets

Queues
4 - 5Programmer’s Reference Manual for AALI Interface

Initialization
4.2.1 Initialize Queue Pointers

The following code is used to initialize the pointers in a queue:

/*

 * Shared read-only structure used by host to initialize

 * host resident queue pointers.

 *

 * Each queue is write only. To initiate an operation the host

 * writes a queue entry with an address of the input/output block

 * located in host memory.

 */

struct cp_queues {

CPaddr command_queue;

CPaddr transmit_queue;

CPaddr receive_queue;

CPaddr small_b1_queue;

CPaddr large_b1_queue;

CPaddr small_b2_queue;

CPaddr large_b2_queue;

u_int32 imask; /* Non-0 enable CP to host interrupts*/

u_int32 istat; /* 1 for interrupt posted */

u_int32 heap_base; /* offset from beginning of ram */

u_int32 heap_size; /* space in bytes avail for queues */

u_int32 hlogger; /* non zero for host logging */

u_int32 heartbeat;

u_int32 firmware_release;

u_int32 mon960_release;

u_int32 tq_plen; /* transmit throughput measurements */

 /*

 * To be compatible with host compilers make sure the init block

 * remains on a quad word boundary. gcc960 does this.

 */

Init_block init; /* one time cmd, not in cmd queue */

u_int32 media_type /* media type id */

int32 oc3_revision; /* OC3 revision number */

};

typedef volatile struct cp_queues Cp_queues;
4 - 6 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization
4.3 CP Boot Sequence

This section provides details on the structure and implications of booting and loading
the CP. The steps are presented in the order in which they occur.

1. The host sets the boot status word (bstat) to cold_start.

/*

 * Structure shared between host and CP,

 * found in low CP memory.

 */

struct mon960com {

Soft_UART uart; /* accessed by mon960 and ncomm */

Boot_status bstat;

u_int32 app_base; /* application base offset */

int32 version; /* mon960 version */

};

typedef volatile struct mon960com Mon960com;

enum boot_status {

cold_start = -1071792099,/* 0xc01dc01d */

self_test_ok = 0x02201958,

self_test_fail = -1380262995,/* 0xadbadbad */

cp_running = -0837681427,/* 0xcellfeed - application */

/* is ready */

mon960_too_big = 0x10aded00

};

typedef enum boot_status Boot_status;

2. The host resets the i960 by setting and then clearing bit zero of the board
control register. The host waits for the boot status word to make a
transition.

3. Before accepting commands mon960 executes a self test. If successful the
boot status word is set to self_test_ok, if unsuccessful the boot status is set
to self_test_fail. If the i960 is unable to execute then the boot status word
may remain at cold_start or transition to an unspecified value.

4. If the self test passes, then the host can initiate a firmware download com-
mand to mon960 with the ncomm utility program (host side front end
for comm960). The host waits for the boot status word to make a
transition.

5. Once the firmware is downloaded and running, the CP will set the boot
status word is set to cp_running. The host can read the heap_size, which
is used when figuring queue sizes. At this point, the entry heartbeat in
the Cp_queue structure will be counting downwards. This downwards
count can be used by the driver developer to determine if the download
4 - 7Programmer’s Reference Manual for AALI Interface

Initialization
and starting of the AALI firmware was successful.

6. The host issues the initialize command. The initialize command block does
not reside in the command queue but is located in the Cp_queue struc-
ture, because the initialize command is used to set the various queue sizes
and indirectly their location in CP memory. Once this command has been
issued, the CP will not accept another initialize command. At this point,
the entry heartbeat in the Cp_queue structure will be counting
upwards.

/*

 * Initialize command block:

 */

struct bscheme_specification {

int32 queue_length;

int32 buffer_size; /* host buffer size */

int32 pool_size; /* number of Rbd's */

int32 supply_blksize; /* num of Rbd's in ioblock (multiples*/

/* of 4 between 4 and 124 inclusive) */

};

typedef struct bscheme_specification Bspec;

struct init_block {

Opcode op;

Status status; /* initialized and read by host */

int32 receive_threshold;/* Not used */

int32 num_connect; /* ATM connections */

int32 cqueue_len; /* command queue */

int32 tqueue_len; /* transmit queue */

int32 rqueue_len; /* receive queue */

int32 rpd_extension; /* number of 32 byte blocks */

int32 tpd_extension; /* number of 32 byte blocks */

Vpvc conless_vpvc; /* Not Used */

int pad[2]; /* force quad alignment */

Bspec small_b1; /* buffer scheme 1, small */

Bspec large_b1; /* buffer scheme 1, large */

Bspec small_b2; /* buffer scheme 2, small */

Bspec large_b2; /* buffer scheme 2, large */

};

typedef volatile struct init_block Init_block;
4 - 8 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization
4.4 Heartbeat - CP State Indication

There is a location in the Cp_queues structure that can be monitored to check the
current state of the CP. This location, Cp_queues.heartbeat, is manipulated by the
CP in different ways depending on the current CP state.

At start-up the heartbeat is set to zero. After initialization, the CP enters a loop wait-
ing for an initialize command to be executed. While waiting for this command, the CP
will decrement heartbeat once for each time through its wait loop. After the initial-
ize command has been executed, the CP enters its normal queue processing loop.
While in this loop, the CP will increment heartbeat each time through the loop. If at
anytime there is a fault from which the CP can not recover, the fault processing code
will set heartbeat with an indication of the fault. These fault codes have the form:
0xdeadxxxx . Where the xxxx value gives the fault reason. The file fatal.h contains
the set of fault values.

If at any time there is a fault from which the CP can not recover, the fault processing
code will set heartbeat with an indication of the fault. These fault codes all have the
form 0xdeadxxxx, and the meaning of their vaules are listed below:

FLAT_LINE 0xdead0000

Baseline error message that spells 0xdead0000. This will never be seen alone, just as a
base for other fatal conditions.

UNEXPECTED_HOST_INTR 0xdead0001

Interrupt originating from host, destined for board. These are currently not used, and
thus the fatal code will happen if event mysteriously occurs.

UNEXPECTED_NET_INTR 0xdead0002

Interrupt from network status chip to the i960. See section in 200-series design specs
for details. Basically, a number of conditions could trigger an interrupt from the sta-
tus chip (including when an EOM/SSM cell is received, etc). We do not currently
enable this feature.

UNEXPECTED_HBUS_INTR 0xdead0003

DEAD0003 is an indication that the adapter card took a bus error trying to access host
memory. This happens when the host driver provides a memory location to the CP
that is not valid.

UNEXPECTED_LBUS_INTR 0xdead0004

If i960 attempts to access illegal memory region this fatal code will be asserted.

UNEXPECTED_BAD_INTR 0xdead0005

Not used.

MARKER_STUCK1 0xdead0006

We place a specified marker in the fifo and if we don’t read it back in reasonable time
this fatal code is asserted. Used to assure that dma fifo is drained. DMA timeout,
marker is stuck behind dma request.

MARKER_STUCK2 0xdead0007

If waiting for the last marker value takes too long this fatal code is asserted. DMA
timeout, marker is stuck behind dma request.

UNEXPECTED_AAL 0xdead0008

Not used.
4 - 9Programmer’s Reference Manual for AALI Interface

Initialization
BAD_NUM_TXSEG 0xdead0009

If the number of segments in the Tpd is less than 0, or greater than the fixed number +
the extensions (specified during initialization of the firmware) this fatal code is
asserted.

BAD_TPD_SIZE 0xdead000a

If the number of 32 byte blocks in the TPD is <=0 or greater than the total size of a TPD
(fixed + extensions) than this fatal code is asserted.

BAD_SEG_LEN 0xdead000b

Not used.

BAD_PDU_LEN 0xdead000c

If the plen specified in the TPD (spec field) does not equal the sum of all the length of
the segments specified in the TPD, or the total length is greater than the MAX_MTU
than this fatal code is asserted.

END_TWO_PASS_COMPILE 0xdead000d

Internal use only.

UNEXPECTED_TAGERR_INTR 0xdead000e

DEAD000E indicates that the DMA engine has received something from the output
FIFO that it was not expecting (eg. it received data when it was expecting an address).
This generally indicates that the VME bus has reset or changed state for some reason.

UNEXPECTED_XFRERR_INTR 0xdead000f

Indicates a Microchannel DMA transfer error.

RX_CELL_THRESHOLD_INTERRUPT 0xdead0010

 An interrupt to the CPU is generated whenever any of the four receive cell counters
exceeds the cell count threshold value.

RX_CELL_OVERFLOW_INTERRUPT 0xdead0011

 An interrupt to the CPU is generated whenever any of the four receive FIFO drops a
cell due to FIFO overflow.

RX_PAY_UNDERFLOW_INTERRUPT 0xdead0012

An interrupt to the CPU is generated whenever the CPU attempts to read from an
empty Payload receive FIFO.

TX_SEQ_ERROR_INTERRUPT 0xdead0013

Interrupt is generated whenever the ESP detects an improper transmit sequence.

SUNI_INITIALIZATION_FAIL 0xdead0014

The process of SUNI initialization fails.
4 - 10 Programmer’s Reference Manual for AALI Interface

Initialization

Initialization
4 - 11Programmer’s Reference Manual for AALI Interface

Initialization
4 - 12 Programmer’s Reference Manual for AALI Interface

DMA Address Alignment

D
M

A
 A

d
dress

A
lignm

ent

APPENDIX A DMA Address Alignment

A.1 Minimum DMA Requirements

The following table shows the minimum DMA address alignment requirements of the
various host memory objects. Each pair of numbers is in bytes and specifies is the
minimum alignment followed the number which the object size is a multiple of (e.g. a
receive buffer for a SPARC10 must start on a 64 byte boundary and the buffer length
must be a multiple of 64 bytes).

Table A.1 - Minimum DMA Requirements 200 Series Adapters

Card Type Rpd/Tpd rbuf tbuf Rsd pool Status Buffer

SBA-200E/SPARC 2 32 32 32, 32 4, 4 32, 32 32, 224

SBA-200E/All other SPARCs 32 32 64, 64 4, 4 32, 32 32, 224

HPA-200E 16 32 16, 4 4, 4 32, 32 32, 224

VMA-200E 32 32 16, 4 4, 4 32, 32 32, 224

MCA-200E 4 32 4, 4 4, 4 32, 32 32, 224

ESA-200E 16 32 16, 4 4, 4 32, 32 32, 224

PCA-200E 4 32 4, 4 4, 4 32, 32 32, 224
A - 1Programmer’s Reference Manual for AALI Interface

DMA Address Alignment
A - 2 Programmer’s Reference Manual for AALI Interface

Host - Cp Shared Memory Definitions

H
ost-C

p Shared
M

em
ory
APPENDIX B Host - CP Shared Memory
Definitions

B.1 Memory Offsets

The values defined here provide the memory offsets (from the start of CP memory)
for the different portions of the CP address space.

/*

 * Copyright (c) 1991 by Fore Systems, Inc.

 */

#ifndef _shared_mem_h

#define _shared_mem_h

#ifndef lint

static char _shared_mem_h_rcsid[] = "@(#)$Id: shared_mem.h,v 1.2
1993/12/ 09 00:08:44 ghoti Exp $ FSI";

#endif /* lint */

#define MON960COM_OFFSET 0x00000400/* From start of RAM */

#define COMMON_ORIGIN 0x00004d40 /* From start of RAM */

#define RAM_SIZE (256 * 1024)

#define MONITOR_ORIGIN 0

#define MONITOR_LENGTH COMMON_ORIGIN

#define COMMON_LENGTH (1 * 1024)

#define APP_ORIGIN (MONITOR_ORIGIN + MONITOR_LENGTH +\COMMON_LENGTH)

#define APP_LENGTH ((RAM_SIZE - MONITOR_LENGTH) -\COMMON_LENGTH)

#endif /* _shared_mem_h */
B - 1Programmer’s Reference Manual for AALI Interface

Host -Cp Shared Memory Definitions
Figure B.1 - Host -CP Shared Memory Offsets

1st 1k Not used

Mon960com Structure
MON960COM_OFFSET

Mon960com.uart
Mon960com.bstat
Mon960com.version

shared_mem.h

board.h

aali.hCOMMON_ORIGIN

Cp_queue structure

Queue Offsets

Queues
B - 2 Programmer’s Reference Manual for AALI Interface

AIX Modifications

A
IX

 M
odifications
APPENDIX C MCA Modifications

C.1 New Functionality

This Appendix describes changes in the ATM Adaptation Layer Interface for MCA-
200 adapter cards in IBM RS6000 workstations running the AIX operating system.
These modifications significantly decrease the overhead associated with maintaining
data cache coherency for the IOCC DMA and host CPU data caches.

In the current version of the software, the state of all queues is held in a status word
on the card instead of host memory. The stataddr member has been eliminated from
the Qcard queue entry.

The ioblock member of the queue entry serves two functions:

1. The ioblock member initiates operations by passing the DMA address to
the card from the host

2. The ioblock member also indicates the completion status.

C.1.1 Data Structure

Queue data structure for the ioblock member for both pending and non-pending
states is shown graphically below:

There are two possible states for status: stat_complete or stat_free. As an option,
stat_complete may also include stat_error

C.1.2 Host CP Interaction

Below is a general description of the changes made to the CP and host interaction to
improve the performance of the MCA-200.

1. At initialization, the host initializes the ioblock member of the CP resident
queue entry with stat_free .

2. To initiate an operation, the host writes the ioblock member of the CP res-
ident queue entry with the DMA address of the host resident I/O block.
This sets the state of the entry to pending (the stat_pending definition is
no longer used).

3. The CP notices that the ioblock member of the queue entry has changed
and starts the operation associated with that queue. At the end of the
operation, the CP will write the ioblock member of the queue entry with
stat_complete .

31 0

ioblock addr

31 4 3 2 1 0

statusNull

Pending State of ioblock Member Non-pending State of ioblock Member
C - 1Programmer’s Reference Manual for AALI Interface

AIX Modifications
C - 2 Programmer’s Reference Manual for AALI Interface

SBA-200E SBus Slave Interface

SBA
-200E

 SB
us
Slave Inferface
APPENDIX D SBA-200E SBus Slave Interface

D.1 SBus Slave Module

The SBus Slave interface shall provide single data (non-burst) access to the SBus boot
prom, SDC internal registers, and i960 instruction RAM. The SDC slave registers
include the SBus interrupt selection register, host control register with both registers
providing read and write access, while the burst transfer select register is read only
location , as initialization is a i960 operation. In addition, the i960 instruction RAM is
both read and write accessible from the SBus interface.

Table 1 shows the SBus address map for the accessible devices. Note the device
decodes only SBus physical address bits 24 through 22, and responds to only non-
burst access.

D.2 Host Control Register

The SDC host control register is a Read modify Write register type. This implies that
individual register contents that require state maintenance must be written to pre-
serve the current state. The register contains 5 data write bits, including 2 sticky bits
which maintain last write data. In addition, the register provides 8 read bits.

The following list shows the HCR Write defines where all bits are active high.

1. Clear HCR register: To clear the entire register, a 0x00 must be written, all
functions inactive.

2. Set CPU reset: Sets the i960 and ESP reset signals, equivalent to a proces-
sor and network reset. The SDC device remains operational. Sticky bit.

3. Set i960 Hold lock: Sets the i960 bus hold request signal active, thereby
placing the i960 into an idle state. Sticky bit.

4. Set i960 slave interrupt: Sets the SDC to i960 local interrupt. Cleared by
i960 Interrupt Service Routine, a CPU reset, or bus reset.

5. Clear SBus interrupt: Clears the pending SBus interrupt, also cleared by
a CPU reset.

6. Enable SBus interrupt: SBus interrupt enable bit, must be enabled after
bus reset. Can be used as interrupt mask per the SBus specification rec-
ommendation. Sticky bit.

Table D.1 - SDC SBus Slave Address Map

SDC Slave Access SBus Physical Address PA<24:0>

SBus boot prom 0x0000000

Host control register 0x0400000

SBus burst transfer size register 0x0800000

Sbus interrupt level selection register 0x0C00000

i960 Instruction RAM 0x1000000
D - 1Programmer’s Reference Manual for AALI Interface

SBA-200E SBus Slave Interface
Notes: (ah) - active high, (al) - active low.

The following list shows the HCR Read definitions, not register bit polarity.

Bit 0: CPU reset indicates the state of the CPU reset signal.

Bit 1: Hold lock indicates the state of the Hold lock signal.

Bit 2: i960 Fail output defines the result of processor self test, performed afte
reset.

Bit 3: Out fifo almost full valid when the out fifo word count has reached 120
words, placing the i960 into the bushold state.

Bit 4: Enable SBus interrupt indicates the state of the SBus interrupt enable bit.

Bit 5: ESP Hold request indicates the state of the ESP transmit fifo almost full
state.

Bit 6: In fifo almost full valid when the SDC bus in fifo word count cannot pro-
vide enough buffer for pending SBus read transfer.

Bit 7: SDC device test mode the device is in test mode state, which disables SBus mas-
ter engine. The test mode loops the out fifo to the in fifo,
thus providing bus loop-back capability.

Bit 8: SBus interrupt indicates the state of this card’s SBus interrupt.

D.3 SBus Burst transfer configuration register

The Sbus burst transfer configuration register is a i960 read/write and SBus read only
register, indicating the maximum burst transfer size accepted by the host machine.
The register is initialized by the i960, and used by the master DMA engine during
block transfer operations. The maximum burst size is determined by the host driver
via the host configuration prom, and then passed to the firmware for device initializa-
tion and used to enable optimal DVMA burst transfer operations.

Table D.2 - Host Control Register bit definitions

Bit 8 7 6 5 4 3 2 1 0

HCR
Write

0 0 0 0 Bus Int.
Enable
sticky

Clear
SBus
Int.

Set
i960
Int.

Hold
Lock,
sticky

CPU
Reset,
sticky

HCR
Read

SBus
Int.
req.
(ah)

Device
Test

mode
(ah)

In fifo
almost

full
(al)

ESP
Hold
req.
(ah)

SBus
Int.

Enable
(ah)

out fifo
almost

full
(ah)

i960
Fail

(al)

Hold
Lock

(ah)

CPU
Reset

(ah)

Table D.3 - SBus Burst transfer configuration register

Sbus Burst transfer word size Data bits <4:0>

4 0x04

8 0x08

16 0x10
D - 2 Programmer’s Reference Manual for AALI Interface

SBA-200E SBus Slave Interface

SBA
-200E

 SB
us
Slave Inferface
D.4 Interrupt Level Select Register

The SBus interrupt level selection register is a hexadecimal value register initialized
by the host processor. The interrupt level is selected by writing the desired interrupt
level to the register. For example, level 3 is chosen by writing the value 011b to the
register. Upon system reset, the register is initialized to level 0x0, thus disabled.

Table D.4 - SBus Interrupt level selection register

Sbus INT level Data bits<2:0>

2 0x2

3 0x3

4 0x4

5 0x5
D - 3Programmer’s Reference Manual for AALI Interface

SBA-200E SBus Slave Interface
D - 4 Programmer’s Reference Manual for AALI Interface

ESA-200E EISA Bus Slave Interface

E
SA

-200E
 EISA

 B
us
Slave Inferface
APPENDIX E ESA-200E EISABus Slave Interface

E.1 EISABus Slave Mode

The EBI chip supports only 8-bit I/O accesses from the host. Table 1 shows the
address map for the registers that are accessible by the host in I/O space.

The “z” value in the above table is determined by the EISA slot that the adapter card
resides. The following sections describe the organization of each register. Unless oth-
erwise noted, all bit values are active high (1).

E.1.1 Host Control Register (HCR)

TST MODE: 1=Board is in self-test mode (wrap test)

0=Normal operation

Wrap test is active after a board reset

(read-only status bit)

INFF ALFL: IN FIFO almost full

(read-only status bit)

ESP HOLD: A hold to i960 is asserted by the ESP chip

(read-only status bit)

Table E.1 - I/O Address Map for EBI chip

I/O Addrress (hex) Descriptions Width Access

0z000 Host Control Register 8 Bits R/W

0z400 High Base Address Register 8 Bits R/W

0z404 Low Base Address Register 8 Bits R/W

0zC00 - 0zCFF EISA ID PROM 8 Bits Read

Table E.2 - Host Control Register bit definitions

Bit 7 6 5 4 3 2 1 0

Read TST
MODE

INFF
ALFL

ESP
HOLD

OTFF
HOLD

HOLD
ACK

CPU
FAIL

LOC
HOLD

BRD
RST

Write X X X CLR INT INT
960A

INT
960B

LOC
HOLD

BRD
RST
E - 1Programmer’s Reference Manual for AALI Interface

ESA-200E EISA Bus Slave Interface
OTFF HOLD: A hold to i960 is asserted by the OUT FIFO (8 words
from full)

(read-only status bit)

HOLD ACK: Hold Acknowledge from i960 (read-only status bit)

CPU FAIL: 1=i960 failed self-test

0=i960 passed self-test

(read-only status bit)

LOC HOLD: 1=Assert hold to i960 to gain access to local bus

0=Release hold

Power-on default = 0

(read/write register bit)

BRD RST: 1=Assert board reset (resets bus ASIC, CPU, ESP, etc.)

Slave access mode is not affected by reset

0=Release reset

Power-on default = 0

(read/write register bit)

CLR INT: 1=Clear bus interrupt set by i960

0=don’t care

(write-only control bit)

INT 960A: 1=Set interrupt to i960

0=don’t care

(write-only control bit)

INT 960B: 1=Set interrupt to i960 (different interrupt line)

0=don’t care

(write-only control bit)
E - 2 Programmer’s Reference Manual for AALI Interface

ESA-200E EISA Bus Slave Interface

E
SA

-200E
 EISA

 B
us
Slave Inferface
E.1.2 High Base Address Register (HBAR)

INT SEL0: Select interrupt line on EISA bus

INT SEL1: SEL1 SEL0

0 0 = Interrupt 5

0 1 = Interrupt 10

1 0 = Interrupt 11

1 1 = Interrupt 12

B31 - B26: Upper 6 bits of EISA address (bit 31 to bit 26)

E.1.3 Low Base Address Register (LBAR)

INT MASK: 0=Enable Interrupt to Host

1=Mask off interrupt to host

INT TYPE: 0=Select Level Interrupt on EISA bus

1=Select Edge-trigger Interrupt on EISA bus

B25 - B20: Bit 25 to bit 20 of EISA address

Table E.3 - High Base Address Register

Bit 7 6 5 4 3 2 1 0

INT
SEL1

INT
SEL0

B31 B30 B29 B28 B27 B26

Table E.4 - Low Base Address Register

Bit 7 6 5 4 3 2 1 0

INT
MASK

INT
TYPE

B25 B24 B23 B22 B21 B20
E - 3Programmer’s Reference Manual for AALI Interface

ESA-200E EISA Bus Slave Interface
E.1.4 Slave Memory Addressing

The EBI chip supports only 32-bit, non-burst, slave memory access from the host.
Slave memory access allows the host to read or write up to 1M bytes of local memory
on the adapter card. To map the 1MB local address to EISA address space, the host
must program the two base address registers: High Base Address Register (HBAR)
and Low Base Address Register (LBAR). Together, the two base address registers
form the upper 12 bits of the EISA address. The lower 20 bits are mapped directly to
the 1MB local address space. Table 3 and Table 4 show the organization of the base
address register.

When there is a memory access by the host, the EBI chip compares the upper 12 bits
on the EISA address bus to the base address registers. If there is a match, the EBI chip
requests the i960 to release the local memory bus and passes the EISA access to the
local memory, using the lower 20 bits of the EISA address to control the local 1MB
address. The EBI chip does not start the slave address comparison until BOTH base
address registers are programmed by the host.

E.1.5 Hold Lock Memory Access

The host can also gain exclusive access to the local memory by setting the LOC HOLD
bit in the HCR. In this ‘hold lock’ mode the i960 is held off the local memory (firm-
ware execution is suspended) until the LOC HOLD bit is cleared by the host. The
indication that the i960 is in hold mode is the assertion of HOLD ACK line, which can
be monitored by the host at bit 3 in the HCR (for diagnostic and testing purpose).

E.1.6 Slave Controller Reset

The slave controller is only affected by a power-on reset from the EISA bus. The slave
mode is functional all other times (BRD RST, wrap mode, or master error states).
E - 4 Programmer’s Reference Manual for AALI Interface

GIA-200E GIO Bus Slave Interface

G
IA

-200E
 G

IO
 B

us

Slave Inferface

APPENDIX F GIA-200E GIO Bus Slave Interface

F.1 GIOBus Slave Interface

Each expansion slot in a GIO bus machine is assigned a 2MB address range within the
32-bit address space of the GIO bus. The base address for the slot is based upon the
slot number; slot 0 has a base address of 0x1F400000, while slot 1 has a base address of
0x1F600000. The GBIA maps four distinct devices (960 RAM, GIO bus Product Identi-
fication Word, Configuration PROM, Processor Control Register) into this address
space so that the host can access them as needed. Table F.1 shows the available devices
and their offsets within the address space along with the actual width of the data from
the device and whether the data is read-only or read-write. The GBIA will not
respond to a write to a read-only device in the slave address region. This will result in
a bus time-out and kernel panic on the host system so care should be taken not to per-
form these invalid accesses.

The slave interface is not intended for heavy use; it supports only single, 32-bit
accesses (no bursts), and during RAM and PROM accesses must stop the 960 from
executing to access shared resources. As such, use of the slave interface after initial
start up should be limited to prevent system performance degradation. Also, as men-
tioned the slave accesses must be 32-bit accesses, so when accessing any device other
than the RAM, the unused upper bits should be masked off and/or ignored.

F.1.1 Processor Identification Word (PIW)

The PIW provides a means for the operating system on the host machine to identify
the type of expansion card. The PIW for cards using the GBIA is 0x5C (the GIA-200 is
0x60).

Table F.1 - Slave Address Space

Addr. Offset Description Notes

0x000000 PIW Register 8 bit, Read Only

0x040000 Host Control Register #2 1 bit, Read/Write

0x08000-0x080800 Configuration PROM 8 bit, Read Only

0x0C0000 Host Control Register 10 bit, Read/Write

0x100000-0x1FFFFF 960 Local RAM 32 bit, Read/Write
F - 1Programmer’s Reference Manual for AALI Interface

GIA-200E GIO Bus Slave Interface
F.1.2 Host Control Register (HCR)

The HCR is a 9 bit control and status register accessible from the GIO bus. The register
provides the host with a number of control and status bits for controlling and moni-
toring the adapter card. Table F.2 lists the functionality of each of the 9 bits for both
read accesses and write accesses along with the power-on default values for reads..

• Bit 7 - Test Mode: This read-only bit lets the host know if the GBIA is cur-
rently in its loopback test mode. Writing to this bit has no effect, although it
will not generate an error.

• Bit 6 - IN FIFO Full: Set to “1” when the DMA FIFO containing data read from
the host is full. This bit is also read-only and can be written to with no effect
nor error.

• Bit 5 - ESP Hold: Asserted when the ESP (SAR ASIC) is asserting the hold sig-
nal to the i960. Read-only as bits 6 & 7 above.

• Bit 4 - OUT FIFO Full/Clear GIO Interrupt: When read, this bit tells when the
DMA request/write FIFO is full which will also hold the 960. When a “1” is
written to the register, it will clear the GIO interrupt asserted from the
adapter to the host. Writing a “0” has no effect.

• Bit 3 - Hold Acknowledge/Set Slave Interrupt #1: During reads, this bit tells
the state of the hold acknowledge (HOLDA) signal from the i960 processor.
Writing a “1” to the register asserts a slave interrupt to the 960. Writing a “0”
has no effect.

• Bit 2 - 960 Fail/Set Slave Interrupt #2: Reading this bit allows the host to tell
whether or not the 960 has failed its internal self test. Writing a “1” asserts the
second slave interrupt to the 960. Writing a “0” has no effect.

• Bit 1 - Lock Hold: This read-write bit allows the host to assert the HOLD sig-
nal to the 960. As long as this bit is asserted, the i960 will be prevented from
executing instructions.

• Bit 0 - Board Reset: The master reset for the GBIA and the adapter. The bit
gets set by the GIO bus RESET signal and is cleared 63 bus cycles later. The bit
can also be set/cleared by the host to reset the adapter.

Table F.2 - Host Control Register

BIT 7 6 5 4 3 2 1 0

Default 0 0 0 0 0 0 0 0

READ Test
Mode

In
FIFO
Full

ESP
Hold

Out
FIFO
Full

Hold
Ack

960
FAIL

Lock
Hold

Board
Reset

WRITE unused unused unused Clear
GIO
Int.

Set 960
Int.#1

Set 960
Int. #2

Lock
Hold

Board
Reset
F - 2 Programmer’s Reference Manual for AALI Interface

GIA-200E GIO Bus Slave Interface

G
IA

-200E
 G

IO
 B

us

Slave Inferface

F.1.3 Host Control Register #2

For uniformity across ASICs, the host interrupt mask bit has been moved to a separate
register instead of being added to the original HCR.

• Bit 0 - GIO Interrupt Mask: Writing a “1” to this bit will prevent the GBIA
from asserting the ~INT1 signal to the host. The interrupt bit internal to the
GBIA will be set, so when the mask is cleared, the interrupt will get asserted
to the host. The host can also read this bit to determine if the mask is currently
set.

F.1.4 Adapter Configuration PROM

The Adapter Configuration PROM has been merged with the MON960 PROM from
which the i960 boots. A 4KB section of the PROM has been reserved to use for any
necessary information such as MAC address, serial number, etc. Table F.3 shows the
address map of the merged PROM.

The portion of the PROM used for adapter configuration information is mapped into
the GIO address space at an offset of 0x00080000 from the adapter base address. Since
the slave interface is capable of word (32-bit) transfers only, accesses to the PROM
must be made using a word access with the byte offset being multiplied by 4, and the
data will be in the least significant byte of the returned word. For example, if byte 7 of
the configuration information is 0x3D, a word access to 0x1F48001C will return
0x0000003D (assuming the card is in slot 0).

NOTE: The ASIC will prepend the required high address bits
to move the PROM access into the appropriate section
of the PROM. Only bits 13 through 2 are propagated
from the GIO bus to the 960 address bus.

F.1.5 Local RAM

The 960 local memory consists of 256K of SRAM, of which all but the first 1K is acces-
sible to the 960 and via slave access. The first 1K of the 960 address space is mapped
into the on-chip RAM of the 960 and is therefore not accessible to the slave interface;
conversely, the first 1K of the slave accessible RAM is not readable by the 960. The
GBIA provides sufficient room in the address space and drives the appropriate
address pins (19:2) to support up to 1MB of local RAM.

Accesses to the local memory require that the GBIA gain mastership of the 960 local
bus. This makes RAM accesses relatively slow and of unpredictable length since the
arbitration time is dependent on the 960 activity, and furthermore it takes multiple
bus cycles to satisfy the RAM timings.

Table F.3 - PROM Address Map

Address Contents “User”

0x0000-0xDFFF 960 Code i960

0xE000-0xEFFF Adapter Configuration Info Host Driver

0xF000-0xFFFF 960 Boot Record i960
F - 3Programmer’s Reference Manual for AALI Interface

GIA-200E GIO Bus Slave Interface
F - 4 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
A

-200E PC
I B

us

Slave Inferface

APPENDIX G PCA-200E PCI Bus Slave Interface

G.1 Slave Interface

The PBI requests 2 MB of memory space and 8 KB of expansion PROM space. The PBI
maps 4 distinct devices (960 RAM, Host Control Register, Mask Register, and
PROM) into this address space so that the host can access them as needed. Table G.1
shows the available devices and their offsets within the address space. Local RAM,
HCR, Mask register, and PSR addresses offsets are referenced to Memory Space. The
Expansion PROM is located at the Expansion PROM address specified in the Configu-
ration Space Header. Since PCI requires reads of the expansion PROM to return 32-
bit words, a single read on the PCI bus will result in four consecutive reads of the
PROM.

The slave interface is not intended for heavy use; it supports only single accesses (no
bursts). RAM and PROM accesses must stop the 960 from executing to allow access to
shared resources. As such, use of the slave interface after initial start up should be
limited to prevent system performance degradation.

The PCI specification requires that the first word of data must be transferred within
16 cycles of frame. If a target will not be able to complete the transfer within 16 cycle
it should retry the bus immediately. For designs based on the 200E architecture, it is
difficult to guarantee first data latency. Assuming a 33 MHz PCI bus it could take as
long as 24 cycles to write RAM, 24 cycles to Read RAM, and 48 cycles to read the
PROM. The PBI uses Maximum Slave Latency register to determine the maximum
number of cycles that it will hold the bus without transferring data. The register
defaults to 0xFF cycles. If strict PCI compliance is required, this register should be set
to 0x10. The Maximum Slave Latency register is located at address 0x40 of Configura-
tion Space.

G.1.1 Configuration Registers

Each PCI Board must have a special set of registers called the configuration registers.
The first 256 bytes of configuration space is defined by the PCI local bus specification
version 2.1. The PBI uses three additional bytes of configuration space for PCA200e
specific functions. Configuration accesses are carried out using configuration bus
cycles and configuration read or write commands. Configuration cycles are different
then normal slave cycles. Refer to the PCI specification for further detail.

Table G.1 - Slave Address Space

Addr. Byte Offset Description Notes

0x000000-0x0FFFFF 960 Local RAM 32 Bit, Read/Write

0x100000 Host Control Register (HCR) Read/Write

0x100004 Host Interrupt Mask Register Read/Write

0x100008 PCI Specific Register (PSR) Read/Write

0x0000-0x1FFF 8 KB - 8B Expansion PROM Read
G - 1Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
The following table describes each of the fields that are present in PBI configuration
space. Fields are one of three types: Read Only (R), Read/Write (R/W), or Read /
Clear(R/C). Read/Clear bits are cleared to 0 by writing the bit position with 1. Writ-
ing a R/C bit with 0 does not effect the bit.

Table G.2 - Configuration Registers

 bits 31 down to 24 bits 23 down to 16 bits 15 down to 8 bits 7 down to 0 addr.
Device ID Vendor ID 00h

Status Command 04h

Class Code Revision Id 08h

BIST Header Latency Timer Cache Line Size 0Ch

Memory Base Address 10h

Reserved 14h

Reserved 18h

Reserved 1Ch

Reserved 20h

Reserved 24h

Reserved 28h

Reserved 2Ch

Expansion ROM Base Address 30h

Reserved 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch

0x00 burst/req threshold master control max.slave latency 40h

Table G.3 - PBI Configuration

Field Name Bit Type Default Value Description

Reserved 31 - 0 R 0x00000000

Vendor ID 15 - 0 R 0x1127 FORE’s Vendor ID.

Device ID 15 - 0 R 0x0300 Device ID selected for PCA200e

Command 0 R 0 Writes do not effect this bit. Always returns 0.

1 R/W 0 A value of 1 allows the PBI to respond to slave
accesses.

2 R/W 0 A value of 1 allows the PBI to act as a bus master.

3 R 0 Writes do not effect this bit. Always returns 0.

4 R/W 0 A value of 1 allows the PBI to generate master
write and invalidate commands.

5 R 0 Writes do not effect this bit. Always returns 0.

6 R/W 0 Parity error control bit. This bit is implemented as
described by version 2.1 of the PCI spec.
G - 2 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
A

-200E PC
I B

us

Slave Inferface

7 R 0 Writes do not effect this bit. Always returns 0.

8 R/W 0 SERR# enable. Implemented as described in
version 2.1 of the PCI spec.

9 R 0 Writes do not effect this bit. Always returns 0.

15-10 R 0b000000 Writes do not effect these bits. Always returns 0’s

Status 6-0 R 0b0000000 Writes do not effect these bits. Always returns 0’s

7 R 1 Writes do not effect this bit. Always returns 1.

8 R/C 0 Master parity error status. Implemented as
described in version 2.1 of the PCI spec.

10-9 R 0b01 DEVSEL# timing. PBI does medium speed
decoding of slave accesses. Writes do not effect
these bits.

11 R 0 Writes do not effect this bit. Always returns 0.
The PBI never target aborts.

12 R/C 0 Master transaction terminated by a target abort.
Implemented as described in version 2.1 of the PCI
spec.

13 R/C 0 Master transaction terminated by a master abort.
Implemented as described in version 2.1 of the PCI
spec.

14 R/C 0 PBI asserted SERR#. Implemented as described in
version 2.1 of the PCI spec.

15 R/C 0 Parity Error Status bit. Implemented as described
in version 2.1 of the PCI spec.

Revision ID 7-0 R 0x00 PBI Revision ID. Writes do not effect these bits.

Class Code 23-0 R 0x020300 Specifies that the PBI is an ATM Network
Controller.

BIST 7-0 R 0x00 No BIST support. Writes do not effect these bits.
Always returns 0’s

Header Type 7-0 R 0x00 Specifies a single function device and header type
0. Writes do not effect these bits. Always returns
0’s

Latency Timer 7-0 R/W 0x00 Latency Timer Register. All bits are R/W.

Cache-line Size 7-0 R/W 0x00 Cache-line Size Register. The PBI implements this
register as described in version 2.1 of the PCI
specification.

Table G.3 - PBI Configuration

Field Name Bit Type Default Value Description
G - 3Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
Memory Base
Address

17-0 R 0x00000 Indicates locate anywhere in 32 bit address space
and not prefetchable.

31-18 R/W 0x0000 Request a 2 MB memory address space

Expansion ROM
Base Address

0 R/W 0
Enable or disable PROM accesses.

12-1 R 0x0000

31-13 R/W 0x00000 Request a 8 KB Expansion PROM address space.

Interrupt Line 7-0 R/W 0x00

Interrupt Pin 7-0 R 0x01

Min_GNT 7-0 R ????

Max_Lat 7-0 R ????

Max. Slave Lat 7-0 R/W 0xFF Defines the max. number of cycles before we
Retry.

Master Control 0 R/W 0 Disable cache-line Reads

1 R/W 0 Disable Write and Invalidates

2 R/w 0 Require 2 Cache-lines for Write and Invalidate.

3 R/W 0 Ignore the Latency Timer.

4 R/W 0 Enable Continuous Request Mode.

5 R/W 0 Force large PCI bus bursts.

6 R/W 0 Convert endianess of Slave RAM accesses

7 R 0

Threshold 7-0 R/W 0x00 Large burst or Continuous Request Threshold
Register.

Table G.3 - PBI Configuration

Field Name Bit Type Default Value Description
G - 4 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
A

-200E PC
I B

us

Slave Inferface

G.1.2 Host Control Register (HCR)

The HCR is an 8-bit control and status register accessible from the PCI bus. The regis-
ter provides the host with a number of control and status bits for controlling and mon-
itoring the adapter card. Table 3 lists the functionality of each of the 8 bits for both
read accesses and write accesses along with the power-on default values for reads.

• Bit 7 - Test Mode: This read-only bit lets the host know if the PBI is currently
in its loopback test mode. Writing to this bit has no effect.

• Bit 6 - In FIFO Almost Full: A read only bit giving the status of the In FIFO.
Can be used with the OUT FIFO Full bit to determine if there is a deadlock
condition (see Section 4.3).

• Bit 5 - ESP Hold: Asserted when the ESP (SAR ASIC) is holding the i960.
Read-only as described in the bit 7 description above.

• Bit 4 - OUT FIFO Full/Clear PCI Interrupt: When read, this bit tells when the
DMA request/write FIFO is full which will also hold the 960. When a “1” is
written to the register, it will clear the PCI interrupt asserted from the adapter
to the host. Writing a “0” has no effect.

• Bit 3 - Hold Acknowledge/Set Slave Interrupt A: During reads, this bit tells
the state of the hold acknowledge (HOLDA) signal from the i960 processor.
Writing a “1” to the register asserts a slave interrupt to the 960. Writing a “0”
has no effect.

• Bit 2 - 960 Fail/Set Slave Interrupt B: Reading this bit allows the host to tell
whether or not the 960 has failed its internal self test. Writing a “1” asserts the
second slave interrupt to the 960. Writing a “0” has no effect.

• Bit 1 - Lock Hold: This read-write bit allows the host to assert the HOLD sig-
nal to the 960 (by writing a “1”). As long as this bit is asserted, the i960 will be
prevented from executing instructions.

• Bit 0 - Board Reset: The master reset for the PBI and the adapter. The bit gets
set by the PCI bus RESET signal and is cleared 63 bus cycles later. The bit can
also be set/cleared by the host to reset the adapter by writing a “1”.

G.1.3 Mask Register

The mask register is an 1 bit register that can be read or written by the host to set and
release the host interrupt mask. Writing a ‘1’ to bit 0 will set the mask, writing a ‘0’ to
bit 0 will release the mask. Interrupts may still be registered while the mask is on.
Reading the register will return the state of the Host Interrupt Mask bit in position 0,
while bits [31:1] will be 0.

Table G.4 - Host Control Register

BIT 7 6 5 4 3 2 1 0

Default 0 0 0 0 0 0 0 0

READ Test
Mode

In
FIFO

Almost
Full

ESP
Hold

Out FIFO
Full

Hold
Ack

960
FAIL

Lock
Hold

Board
Reset

WRITE unused unused unused Clear Host

 Int.

Set 960
Int. 1

Set 960
Int. 2

Lock
Hold

Board
Reset
G - 5Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
G.1.4 PCI Specific Register (PSR)

The PSR is an 1 bit control and status register accessible from the PCI bus. The register
indicates whether or not the PBI has asserted the Host Interrupt (Interrupt Pending).

Bit 0 - Active high indication of a pending host interrupt. This read only indication is
not masked by the host interrupt mask. The pending bit will return to 0 when the
host interrupt has been cleared.

G.1.5 Adapter Expansion PROM

The Adapter Expansion PROM is a 2Kx8 bit PROM mapped into the Expansion
PROM address space. It is used for holding static information about the adapter card
such as serial number, firmware and hardware revisions, MAC address, etc. The
PROM is read through the slave interface. A single PCI bus read will cause four back-
to-back reads of the PROM. The four 8-bit values will be combined and returned to
the PCI bus as a 32-bit word.

To extract data from PROM, a command is written to the Command Queue, using a
buffer supplied by the host, and an opcode value of 0x09000000. (Note the preferred
method of doing this is to alter the "opcodes" enumeration, found in ./include/
fore_cp/aali.h, to include "op_get_prom_data = 0x09000000", then to use the new ele-
ment to identify the get-PROM-data command.) The data returned from the firmware
is defined by the following data structure:

 typedef struct PEXPANSION_ROM_DATA{

 unsigned long version;

 unsigned long serial;

 unsigned char macAddr[8]; /* not 6, and byte swapped */

 } PEXPANSION_ROM_DATA;

When the command has been completed, extracting the version data can be done with
the following statements (where PPromData is a pointer to the buffer supplied with
the op_get_prom_data command):

 Adapter->HardwareVersion = CTOHL(PPromData->version);

 Adapter->SerialNumber = CTOHL(PPromData->serial);

Retrieving the MAC address is dependent upon whether or not you are using the big
or little endian firmware on the PCA-200 card:

 Adapter->macAddr.Byte[0] = PPromData->macAddr[gpd_mac_order[0]];

 Adapter->macAddr.Byte[1] = PPromData->macAddr[gpd_mac_order[1]];

 Adapter->macAddr.Byte[2] = PPromData->macAddr[gpd_mac_order[2]];

 Adapter->macAddr.Byte[3] = PPromData->macAddr[gpd_mac_order[3]];

 Adapter->macAddr.Byte[4] = PPromData->macAddr[gpd_mac_order[4]];

 Adapter->macAddr.Byte[5] = PPromData->macAddr[gpd_mac_order[5]];

For little endian, gd_mac_order[] is be defined as:

 int gpd_mac_order[6] = { 2, 3, 4, 5, 6, 7 };

For big endian firmware, the following ordering is defined:

 int gpd_mac_order[6] = { 1, 0, 7, 6, 5, 4 };
G - 6 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
A

-200E PC
I B

us

Slave Inferface

G.1.6 Local RAM

The 960 local memory consists of 256 KB of SRAM. The PBI provides sufficient room
in the address space and drives the appropriate address pins (19:2) to support up to
1MB of local RAM.

Accesses to the local memory require that the PBI gain mastership of the 960 local bus.
This makes RAM accesses relatively slow and of unpredictable length since the arbi-
tration time is dependent on the 960 activity, and furthermore it takes multiple bus
cycles to satisfy the RAM timings.
G - 7Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
G - 8 Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface

V
M

E
-bus Slave
APPENDIX H VMA-200E VME-bus Slave Interface

H.1 VMA-200E Pre-Installation Configuration

Before installing the VMA-200E, be sure to make any needed modifications to the
board. The following information pertains to DIP switches on the VMA-200E and
their effect on the operation of the card. The default settings are shown shaded below:

Figure H.1 - VMA-200E DIP Switch Locations.

H.1.1 Slave Address Configuration

NOTE: If more than one VMA-200E will be installed in a
system, the DIP switch settings will need to be
changed. See the following information for details.

To enable proper VMEbus address decoding, two 8 position DIP switches are pro-
vided for address selection. Switch SW1 is used to qualify the A16 short address
space. Switch SW2 is used to qualify the A32 extended address.

FORE
SYSTEMS

SW
2

1 2 3 4 5 6 7 8

SW
1

1 2 3 4 5 6 7 8

ON

OFF

ON

OFF
H - 1Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface
H.1.2 VMEbus Short A16 Address Space

The Short A16 address space is decoded using the four most significant bits of the 16
bit VMEbus address (A15:12). SW1 switch positions 1 through 4 must be configured
to reflect the hexadecimal value chosen for the A16 base address.

NOTE: The configuration files supplied by FORE Systems
require that the A16 address space DIP switches be
set to either 1100, 1101, 1110 or 1111.

The following Short base address configuration table shows SW1 configuration.

In addition to the A16 short base address, further address decoding is used to specify
the individual devices. The VMEbus address bits 11:10 provide access to the following
short devices.

NOTE: The defined short data access width is 16 data bits,
with only 8 data bits significant.

Table H.1 - Short Base Address Configuration

VME Short base address
VME addr<15:12> (binary)

SW1
pos. 1

SW1
pos. 2

SW1
pos. 3

SW1
pos. 4

0000 on on on on

0001 on on on off

0010 on on off on

.

.

1101 off off on off

1110 off off off on

1111 off off off off

Table H.2 - Device Access Decoding Information

VMEbus addr<11:10> VME valid data Device Access

00 D15:8 Board ID prom Read only

01 D7:0 Host control register Read/Write

10 D7:0 Interrupt vector register Read/Write
H - 2 Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface

V
M

E
-bus Slave
H.1.3 VMEbus Identification PROM

The VMEbus ID prom is a read only byte access device. The device contains FORE
Systems information specific to the card, such as serial number, hardware version
number, etc. This is a read only device and drives VME data bits 15:8.

The PROM data is of the form:

 <type><name_len><attribute_name><val_len><attribute_value>

where <type> is either "1" for integer or "2" for string value. The <attribute_name>
field is a string value which names the value, and <attribute_value> is dependent on
<type>. <name_len> and <val_len> are needed to indicate the size of the attribute
fields.

The data written to the PROM are:

 string: model = "FORE, VMA-200E"

 int : serial-number = xxxxx

 int : hw-version = x.x

 int : mac-addrhi4 = mac_addrhi4

 int : mac-addrl02 = serial_number

 string: copyright = "copyright 19xx by Fore Systems, Inc."

 int : "" = 0 (null)

H.1.4 Host Control Register

The host control register provides various functions to the host processor to drive and
monitor board control and status data. This register is a read-modify-write type register.
Consequently, all write operations are preceded by read accesses to maintain register
state. The register is accessed via VMEbus data bits 7:0 . The following table shows bit
definitions and function descriptions for the register’s write and read states.

Table H.3 - Host Control Register

VME Data
Bit

Write Description Read Description

0 CPU reset, sticky (maintains state);

Resets the i960 and periphery logic

CPU reset

1 Hold Lock, sticky bit (maintains state);

Sets the i960 hold local bus request input

Hold Lock

2 Sets the i960 slave interrupt VME64 mode

3 None i960 Fail output

4 None Board test mode
H - 3Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface
H.1.5 VMEbus A32 Long Slave Address Space

VMEbus A32 Extended Slave address space is decoded using the eight most signifi-
cant bits of the 32 bit VMEbus address bus (A31:24). Therefore, SW2 switch positions
1 through 8 must be configured to reflect the byte-wide hexadecimal values chosen
for A32 base addressing.

NOTE: In the following table, binary 0=ON and binary
1=OFF.

NOTE: The configuration files supplied by FORE Systems
require that a card which is assigned A16 address
space 1100 also be assigned A32 address space 1A.
Similarly, A16 address space 1101 goes with A32
address space 1B, 1110 goes with 1C, and 1111 goes
with 1D.

H.1.6 VMEbus Interrupter

The VMEbus Interrupter circuitry consists of a programmable vector ID register, an
interrupt level selector, and hardware daisy-chain logic. The VMEbus interrupter
functions as a single level interrupt generator and as an interrupt acknowledge cycle
participator.

Table H.4 - A32 Base Addressing

VME Long base addr
VA31:24(hex)

SW2
pos. 1

SW2
pos. 2

SW2
pos. 3

SW2
pos. 4

SW2
pos. 5

SW2
pos. 6

SW2
pos. 7

SW2
pos. 8

00 on on on on on on on on

01 on on on on on on on off

02 on on on on on on off on

.

.

FD off off off off off off on off

FE off off off off off off off on

FF off off off off off off off off
H - 4 Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface

V
M

E
-bus Slave
Prior to interrupt cycle operations, the user and the host driver must initialize the
card. First, the user must choose the VMEbus interrupt request level for the VMA-200
card. The interrupt level is then encoded into DIP switch SW1, positions 6 through 8.
The encoding is similar to the short and long address initializations. This procedure is
performed only during a non-powered situation. After power-up, the host must ini-
tialize the 8-bit vector ID register prior to interrupt generation by the VMA-200 to the
host.

NOTE: In the above table, binary 0=ON and binary 1=OFF.

H.1.7 VME64 Master Mode

VME64 Master mode is controlled with SW1, position 5 as shown in the following
table:

Table H.5 - Interrupt Request Level

VMEbus Interrupt request level
SW1

pos. 6
SW1

pos. 7
SW1

pos. 8

1 on on off

2 on off on

3 on off off

4 off on on

5 off on off

6 off off on

7 off off off

Table H.6 - VME64 Master Mode Selector

Mode
SW1

pos. 5

VME64 Master on

VME32 Master only off
H - 5Programmer’s Reference Manual for AALI Interface

VME-bus Slave Interface
H - 6 Programmer’s Reference Manual for AALI Interface

MCA-200 Micro Channel Bus Slave Interface

M
C

A
-200 M

icro C
hannel
B
us Slave Inferface

APPENDIX I MCA-200 Micro Channel Bus Slave
Interface

I.1 Slave Interface

The slave interface accepts two kinds of slave accesses, I/O accesses and memory
accesses.

The board control register, Micro Channel POS registers, and adapter information
PROM are accessible via slave I/O accesses to the MCA-200. The MCA-200 responds
to a slave I/O access when M/-IO is driven low and the bits 15 through 10 of the
address on the bus match the I/O start address contained in the POS register. The
table below shows the I/O space of the adapter card. Addresses not appearing in the
table are invalid and should not be accessed.

The MCA-200 is selected for a slave memory access when M/-IO is high, the MSB of
the address (A31:24) is 0x00 and A23:20 match the value in the Mem Address POS
register. The matching scheme chosen allows for expansion of adapter card memory
to 1MB. Users must be aware that current cards, with 256KB of memory, do not
decode address bits 18 and 19.

Memory accesses are 32-bits wide only, and must be single transfers since the MCA-
200 does not support streaming data transfers as a slave.

Table I.1 - I/O Space

AD<9:0> Device Access

0x100 Board Control Register Write only

0x200-0x3FF Configuration PROM Read only
I - 1Programmer’s Reference Manual for AALI Interface

MCA-200 Micro Channel Bus Slave Interface
I.2 Board Control Register

The board control register (BRDCTRL) performs a number of operations based upon
the data written to it. The legal values and their corresponding functions are as fol-
lows:

NOTE: Writing to the board control register does not require
the slave interface to gain the mastership of the local
bus from the 960. This immediate access capability is
valuable in cases where the 960 may be hung on a
local bus transfer and the board needs to be reset.

Table I.2 - Board Control Registers

d(2:0) Action Description

0 De-assert Board
Reset

De-assert Board Reset clears the reset signals to the 960 and the bus master
state machine. The 960 will begin execution after this value is written to the
board control register.

1 Assert Board
Reset

Assert Board Reset causes the reset signals to various devices on the board
to be asserted including: the 960, the local bus controller, the IN and OUT
fifos, the network interface status, and the receive and transmit fifos. The
reset action also clears the hold bit for the local bus and the interrupt bits for
the 960 and for the Micro Channel. The reset bit must remain set for a mini-
mum of 16 Micro Channel cycles, and cleared afterwards. The Micro Chan-
nel CHRESET signal asserted at boot time causes a similar reset action (in
addition to resetting the Micro Channel controller).

2 Hold Local Bus Hold local bus causes the slave interface to gain mastership of the local bus
and to keep it as long as this bit is set. This feature can be used for read-
modify-write of critical memory regions by the host. It can also be used to
reduce access time when the host is accessing a block of local memory since
it eliminates the time to request and gain the local bus mastership from the
960 in slave accesses. Note that holding the local bus locks the 960 out of the
local bus and effectively halts it. Therefore this bit must be set only when
halting the 960 is acceptable.

3 Interrupt 960 960 interrupt asserts the XINT0 line of the 960 processor. The bit can only be
cleared by the 960 (upon servicing the interrupt); it can not be cleared by the
host by writing a 0.

4 Clear Micro
Channel Inter-

rupt

Clear Micro Channel interrupt clears the bit which is normally set by the 960
in the bus control register to generate an interrupt to the host. Note that
unlike the other bits this bit does not "stay around"; writing a 1 to this bit
location simply causes the Micro Channel interrupt to be cleared.
I - 2 Programmer’s Reference Manual for AALI Interface

MCA-200 Micro Channel Bus Slave Interface

M
C

A
-200 M

icro C
hannel
B
us Slave Inferface
I.3 Local Memory

The local memory consists of SRAM ranging in size from 256K bytes to 1M bytes
depending on the implementation. The entire memory is accessible by the host.
Note, however, that the first 1K bytes of the local memory is NOT accessible by the
960 as this address space is mapped to the on-chip RAM.

Accessing the local memory requires gaining mastership of the local bus from the 960,
therefore it requires multiple cycles depending on the bus activity of the 960. Once the
local bus mastership is gained it takes multiple Micro Channel cycles to write to or
read from the local memory. The local bus hold feature described above can be used
to speed up block accesses to the local memory.

I.4 Prom Data

The format of attributes written to the PROM is as follows:

 <type><attribute_length><attribute_name><value_length><value>

where type=1 indicates a string, and type=2 indicates an integer.

The following attributes are written in the following order to the MCA-200E PROM:

* the copyright notice is a standard notice, yet is truncated within the table (see
below).

NOTE:
• LENGTHs are in BYTEs, LOCATION is the number of BYTEs from the begin-

ning.
• VALUEs for serial-number, hw-version, and mac-addrlo2 are variable.
• * serial-number and mac-addrlo2 are equivalent.
• * serial-numbers 0 - 8191 are reserved for oc3
• * serial-numbers 8192-16383 are reserved for utp
• * serial-numbers 16384 - 24575 are reserved for taxi

An example dump of the PROM contents is shown below for an MCA-200E with

a serial number (and mac-addrlo2) of '1' and a hardware version of '1':

Table I.3 - PROM Attributes

TYPE ATTRIB_LENGTH ATTRIBUTE_NAME VALUE_LENGTH VALUE LOCATION

1 5 model 14 (0x0E) FORE, MCA-
200E

8

2 (0X26) 13 (0x0D) serial-number 4 1 (ex) 38

2 (0X37) 10 (0x0A) hw-version 4 1 (ex) 55

2 (0X49) 11 (0x0B) mac-addrhi4 4 0020480B 73

2 (0X5B) 11 (0x0B) mac-addrlo2 4 1 (ex) 91

2 (0X6B) 9 copyright 36 (0x24) “Copyright...”* 107
I - 3Programmer’s Reference Manual for AALI Interface

MCA-200 Micro Channel Bus Slave Interface

Table I.4 - PROM Contents

ADDRESS 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

00000000 01 05 6D 6F 64 65 6C 0E 46 4F 52 45 2C 20 4D 43

00000010 41 2D 32 30 30 45 02 0D 73 65 72 69 61 6C 2D 6E

00000020 75 6D 62 65 72 04 00 00 00 01 02 0A 68 77 2D 76

00000030 65 72 73 69 6F 6E 04 00 00 00 01 02 0B 6D 61 63

00000040 2D 61 64 64 72 68 69 34 04 00 20 48 0B 02 0B 6D

00000050 61 63 2D 61 64 64 72 6C 6F 32 04 00 00 00 01 01

00000060 09 63 6F 70 79 72 69 67 68 74 24 43 6F 70 79 72

00000070 69 67 68 74 20 31 39 39 36 20 62 79 20 46 6F 72

00000080 65 20 53 79 73 74 65 6D 73 2C 20 49 6E 63 2E 02

00000090 00 04 00 00 00 00

.. model. FORE,
MCA-200E........
serial number...
..hw version..
mac addrhi4..H
.mac addrlo2. n
.copyright$
Copyright 1996
by FORE Sys-
tems, Inc.
I - 4 Programmer’s Reference Manual for AALI Interface

SBA Bus Slave Interface

SB
A

 B
us Slave Inferface
APPENDIX JSBA-200 SBus Slave Interface

J.1 Slave Interface

The slave interface supports only single-word accesses. No burst, half-word, or byte
accesses are supported.

The table below shows the valid addresses for a slave access.

J.2 SBus Boot PROM

The SBus boot prom is a 32K byte PROM containing SBus boot Forth code and board
identification. Access to the PROM takes multiple cycles, including gaining master-
ship of the local bus followed by a 4 cycle PROM access since the PROM is a slow
device.

Table K.1 - Slave Interface Addresses

PA<25:0> Device Access

0000000 - 0007FFC SBus boot PROM Read Only

100000 Board Control Register Write Only

2000000 - 23FFFFC Local RAM Read/Write
K - 1Programmer’s Reference Manual for AALI Interface

SBA Bus Slave Interface
J.3 Board Control Register

The Board Control Register contains the following control bits - writing a 1 to the bit
position causes the corresponding action.

NOTE: Writing to the board control register is immediate.
That is, the slave interface does not wait to gain the
mastership of the local bus from the 960. This
immediate access capability is valuable in cases
where the 960 may be hung on a local bus transfer
and the board needs to be reset.

J.3.1 Local Memory

The local memory consists of SRAM ranging in size from 256K bytes, 512K bytes, to
1M bytes depending on the implementation. The entire memory is accessible by the
host. Note, however, that the first 1K bytes of local memory is NOT accessible by the
960 as this address space is mapped to the on-chip RAM.

Accessing the local memory requires gaining mastership of the local bus from the 960,
therefore requires multiple cycles depending on the bus activity of the 960. Once the
local bus mastership is gained it takes two SBus cycles to write to the local memory,
and three SBus cycles to read from the local memory. The local bus hold feature
described above can be used to speed up block accesses to the local memory.

Table K.2 - Board Control Registers

d(2:0) Action Description

0 Board Reset Board Reset bit causes the reset signals to various devices on the board to be
asserted including: 960, local bus controller, IN and OUT fifos, and the net-
work interface status, and receive and transmit fifos. The reset action also
clears the hold bit for the local bus and the interrupt bits for the 960 and for
the SBus. The reset bit must remain set for a minimum of 16 SBus cycles, and
cleared afterwards. The SBus Reset signal asserted at boot time causes a sim-
ilar reset action.

1 Hold Local Bus Hold Local Bus bit causes the slave interface to gain mastership of the local
bus and to keep it as long as this bit is set. This feature can be used for read-
modify-write of critical memory regions by the host. It can also be used to
reduce access time when the host is accessing a block of local memory since
it eliminates the time to request and gain the local bus mastership from the
960 in slave accesses. Note that holding the local bus locks the 960 out of the
local bus and effectively halts it. Therefore, this bit must be set only when
halting the 960 is acceptable.

2 Interrupt 960 960 Interrupt bit asserts the INTXX line of the 960 processor. The bit can only
be cleared by the 960 (upon servicing the interrupt); it can not be cleared by
the host by writing a 0.

3 Clear SBus

Interrupt
Clear SBus Interrupt bit clears the SBus interrupt bit which is normally set
by the 960 to generate an interrupt to the host. Note that unlike the other bits
this bit does not “stay around” writing a 1 to this bit location simply causes
the SBus interrupt to be cleared.
K - 2 Programmer’s Reference Manual for AALI Interface

EISA bus Slave

E
ISA

 bus Slave

APPENDIX K ESA-200 EISA Bus Slave Interface

K.1 Slave Interface

The slave interface is divided into two sections: one for I/O accesses and the other for
memory space accesses. The configuration PROM, board control register and memory
base address register reside in the I/O space for the card. All of the I/O space devices
are accessed through byte lane 0 of the EISA bus (bits 0 to 7) and can only be
addressed as a byte-wide device.

NOTE: The i960 RAM interface supports only single 32-bit
word accesses. No burst, half-word, or byte accesses
are supported.

The table below shows the address map for slave accesses to I/O space:

In the table, “z” is the number of the EISA slot in which the card resides.

K.1.1 EISA bus Configuration PROM

The EISA bus configuration PROM is a 256 byte PROM. It contains the EISA board
product ID at 0zC80 to 0zC83, plus any other information which is specific to the card
(serial number, version number, 802 address, etc.) Access to the PROM takes multiple
cycles since it is a slow device.

Table L.1 - Slave Access Address Map

EA<11:0> Device Access

0z000 Board control register Write only

0z400 Memory base address reg. (high slice) Write only

0z404 Memory base address reg. (low slice) Write only

0zC00 - 0zCFF EISA configuration PROM Read only
L - 1Programmer’s Reference Manual for AALI Interface

EISA bus Slave Interface
K.1.2 Contents of the ESA-200 Configuration PROM

(I/O addresses expressed in hexadecimal)

0xC80 - 0xC83: EISA configuration ID (4 bytes) - either:

FSI2001 (original ESA-200)

FSI2002 (ESA-200A)

FSI2003 (ESA-200E)

0xC80 - 0xC8B: Hardware revision code

Byte 0xC8A: Lower 4 bits contain the sub_code

Byte 0xC8B: Upper 4 bits contain the major_code

Lower 4 bits contain the minor_code

The hardware version reported by the system is of the format:

major_code.minor_code.sub_code

0xC94 - 0xC97: Serial number - 32-bit value which gives the serial

number of the board

Format of the serial number is “byte0:byte1:byte2:byte3”, where “byte0” is the most
significant 8 bits of the serial number and “byte3” is the least significant.

Byte 0xC94: byte0

Byte 0xC95: byte1

Byte 0xC96: byte2

Byte 0xC97: byte3

0xCA0 - 0xCA5: MAC Address - Physical address of the ESA-200 card

Format of the MAC address is “byte0:byte1:byte2:byte3:byte4:byte5”

Byte 0xCA0: byte0

Byte 0xCA1: byte1

Byte 0xCA2: byte2

Byte 0xCA3: byte3

Byte 0xCA4: byte4

Byte 0xCA5: byte5
L - 2 Programmer’s Reference Manual for AALI Interface

EISA bus Slave

E
ISA

 bus Slave

K.1.3 Memory Base Address Register

The memory base address register holds the location of the window into the i960
RAM from the EISA bus. At system configuration time, 1 Mbyte of the EISA address
space must be allocated for the ESA-200 card.

The upper twelve bits of the assigned address are written to the two memory base
address registers (each 6 bits wide) in the following manner:

The “/” in the above tables indicates that the bit is negated. The address comparator
remains inactive until both halves of the base address have been written. Once the
register has been written at configuration time, no further writes should be performed
to the register.

Table L.2 - EISA Base Address for the i960 RAM
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 Lower 20 unmatched bits.

Table L.3 - Memory Base Address Register, High Slice

/b31 /b30 /b29 /b28 /b27 /b26 0 0

Table L.4 - Memory Base Address Register, Low Slice

/b25 /b24 b23 b22 b21 b20 0 0
L - 3Programmer’s Reference Manual for AALI Interface

EISA bus Slave Interface
K.1.4 Board Control Registers

By writing an encoded value to the board control register, a control bit or group of
control bits on the adapter card is toggled. The allowable values and their correspond-
ing functions are as follows:

Writing to the board control register is immediate. To clarify, the slave interface does
not wait to gain the mastership of the local bus from the i960. This immediate access
capability is valuable in cases where the i960 may be hung on a local bus transfer and
the board needs to be reset.

Table L.5 - Board Control Registers

d(2:0) Action Description

0 Board reset Causes the reset signals to various devices on the board to be asserted
including: i960, local bus controller, bus fifos, the network interface status,
and receive and transmit fifos. The reset action also clears the hold bit for the
local bus and the interrupt bits for the i960 and for the EISA bus. The reset
bit must remain set for a minimum of 16 EISA bus cycles before the CPU
reset can be cleared. The EISA bus RESDRV signal asserted at boot time
causes a similar reset action.

1 Clear CPU reset De-asserts the line which keeps the i960 and the devices on its bus in the
reset state. Typically written after powerup reset or after writing Board
Reset.

2 Set local bus
hold

Causes the slave interface to gain mastership of the i960 local bus and to
keep it until Clear Local Bus Hold is written . This feature can be used for
read-modify-write of critical memory regions by the host. Note that holding
the local bus locks the i960 out of the local bus and effectively halts it. There-
fore this function must only be used when halting the i960 is acceptable.

3 Clear local bus
hold

Undoes the hold caused by Set Local Bus Hold.

4 Interrupt i960 Asserts the INT0 line of the i960 processor. The interrupt can only be cleared
by the i960 (upon servicing the interrupt); it can not be cleared by any writes
to the board control register by the host.

5 Clear EISA bus
interrupt

Clears the EISA bus interrupt which is set by the i960 to the bus.

6 EISA interrupt
select IRQ5

One of four board control register values which determines the EISA inter-
rupt request line for interrupts from the adapter card to the host processor. If
the host writes this value, then EISA interrupts will be asserted on line IRQ5.
If the host writes one of the three other values, then IRQ5 is deselected and a
different interrupt line is used for host interrupts. The value of the interrupt
select should be chosen during system configuration and should not change
during run-time.

7 EISA interrupt
select IRQ11

If the host writes to this location, then interrupts to the host will be asserted
on line IRQ11.

8 EISA interrupt
select IRQ10

If the host writes to this location, then interrupts to the host will be asserted
on line IRQ10.

9 EISA interrupt
select IRQ12

If the host writes to this location, then interrupts to the host will be asserted
on line IRQ12.
L - 4 Programmer’s Reference Manual for AALI Interface

GIO bus Slave Interface

G
IO

 bus Slave

APPENDIX L GIA-200 GIO Bus Slave Interface

L.1 Slave Interface

The board control register, GIO bus PIW register, 960 RAM, and adapter configura-
tion information PROM are accessible via slave accesses to the GIA-200. The GIA-200
responds to a slave access whenever it detects its address being driven onto the bus
while the bus address strobe signal is asserted.

L.1.1 Memory Base Address

The table below shows the address space of the GIA-200 as seen from the host.

NOTE: Memory accesses are 32-bits wide only, and must be
single transfers since the GIA-200 does not support
burst transfers as a slave.

Table M.1 - Slave Interface Addresses

AD<20:0> Device Access

0x000000 PIW Register Read Only

0x080000--
0x080800

Information PROM Read Only

0x0C0000 Board Control Register Write Only

0x100000 --
0x1FFFFF

960 RAM Read/Write
M - 1Programmer’s Reference Manual for AALI Interface

GIO bus Slave Interface
L.2 Board Control Register

The board control register (BRDCTRL) performs a number of operations based upon
the data written to it. The allowable values and their corresponding functions are as
follows:

Table M.2 - Board Control Registers

Value Function Description

0 De-assert
Board Reset

Cancels a reset before an actions are taken.

1 Assert Board
Reset

Causes the reset signals to various devices on the board to be asserted
including: the 960, the local bus controller, the IN and OUT fifos, the net-
work interface status, and the receive and transmit fifos. The reset action
also clears the hold bit for the local bus and the interrupt bits for the 960 and
for the GIO bus. The reset bit must remain set for a minimum of 16 GIO bus
cycles, and cleared afterwards. The GIO bus RESET signal asserted at boot
time causes a similar reset action.

2 Hold Local
Bus

Causes the slave interface to gain mastership of the local bus and to keep it
as long as this bit is set. This feature can be used for read-modify-write of
critical memory regions by the host. It can also be used to reduce access
time when the host is accessing a block of local memory since it eliminates
the time to request and gain the local bus mastership from the 960 in slave
accesses. Note that holding the local bus locks the 960 out of the local bus
and effectively halts it. Therefore this bit must be set only when halting the
960 is acceptable.

3 Interrupt 960 Asserts the XINT0 line of the 960 processor. The bit can only be cleared by
the 960 (upon servicing the interrupt); it can not be cleared by the host by
writing a 0.

4 Clear GIO bus
Interrupt

Clears the bit which is normally set by the 960 in the bus control register to
generate an interrupt to the host. Note that unlike the other bits this bit does
not “stay around”; writing a 1 to this bit location simply causes the GIO bus
interrupt to be cleared.
Writing to the board control register does not require the slave interface to
gain the mastership of the local bus from the 960. This immediate access
capability is valuable in cases where the 960 may be hung on a local bus
transfer and the board needs to be reset.
M - 2 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
I B

us Slave Inferface
APPENDIX M PCA-200 PCI Bus Slave Interface

M.1 Slave Interface

The slave interface is divided into two sections: one for configuration space accesses
and the other for memory space accesses. The configuration registers, board control
register and serial number PROM reside in the configuration space for the card. The
960 SRAM interface supports only single-word accesses. No burst, half-word, or byte
accesses are supported.

The table below shows the high-level address map for slave accesses to configuration
space:

M.1.1 Configuration Space Registers

The mandatory configuration registers for the PCI bus are implemented on the PCA-
200. The format for the registers is as found in the bus specification:

Figure N.1 - Configuration Space Registers

AD<11:0> Device Access

00h -3Ch PCI Configuration Registers Read/write

40h - 7Ch Bus Control Register Write only

80h - FCh Serial Number PROM Read only

bit 31 16 15 0

Device ID Vendor ID

Status Command

Class Code Rev ID

BIST
Header
Type

Latency
Timer

Cache
Line Size

Base Address Register

Max_Lat Min_Gnt
Interrupt

Pin
Interrupt

Line

0x00

0x04

0x08

0x0C

0x10

0x3C
N - 1Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
• Vendor ID (addr 0x00, bits 15:0) - Sixteen bit vendor identification number.
FORE Systems ID = 0x1127.

• Product ID (addr 0x00, bits 31:16) - Major revision number of hardware. Set to
0x0210 for the PCA-200A.

• I/O Space Control (addr 0x04, bit 0) - Controls the card's response to I/O
space accesses. A value of 0 disables the card response. A value of 1 allows
the card to respond to I/O space accesses.

• Memory Space Control (addr 0x04, bit 1) - Controls the card's response to
memory space accesses. A value of 0 disables the card response. A value of 1
allows the card to respond to memory space accesses.

• Master Control (addr 0x04, bit 2) - Controls the card's ability to act as a master
on the PCI bus. A value of 0 disables the card from generating PCI accesses.
A value of 1 allows the card to behave as a bus master.

• Target-Abort Flag (addr 0x04, bit 28) - This bit must be set by a master device
whenever its transaction is terminated with target-abort.

• Master-Abort Flag (addr 0x04, bit 29) - This bit must be set by a master device
whenever its transaction is terminated with master-abort.

• Parity Error Flag (addr 0x04, bit 31) - This bit is set by the card whenever it
detects a parity error.

• Class Code and Revision ID (addr 0x08, bits 31:0) - Field set to value
0x02030000.

• Cache Line Size (addr 0x0C, bits 7:0) - Register specifies the number of 32-bit
words in a memory cache line (written by the system BIOS). Register is read/
write, initialized to zero on bus reset.

• Latency Timer (addr 0x0C, bits 15:8) - Register specifies, in units of PCI bus
clocks, the value of the Latency Timer. The Latency Timer determines the
maximum amount of time the card may be a master on the bus. The register
is fully read/writeable.

• Header Type (addr 0x10, bits 23:16) - Read-only field set to 0x00, indicates sin-
gle-function device.

• BIST (addr 0x10, bits 31:24) - Built-in Self Test field set to 0x00 (not supported)
• Base Address Register (addr 0x10, bits 31:20) - Read/write register which

determines the mapping of the 960 SRAM into both I/O and memory space.
The unused bits of the register (19 to 0) always return zero when read.

• Interrupt Line Register (addr 0x3C, bits 7:0) - The Interrupt Line register is an
8-bit register used to communicate interrupt routing information. The regis-
ter is read/write, and has a value of zero after board reset. POST software
will write the routing information into this register as it initializes and config-
ures the system.

• Interrupt Pin Register (addr 0x3C, bits 15:8) - Register is set to value 0x01
(read only). Indicates that interrupts to the bus are driver on line INTA.

• Minimum Grant (addr 0x3C, bits 23:16) - Read-only register, set to value 0x10.
• Maximum Latency (addr 0x3C, bits 31:24) - Read-only register, set to value

0x10.
N - 2 Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface

PC
I B

us Slave Inferface

M.1.2 Board control register

The board control register performs a number of operations based upon the data writ-
ten to it. The register resides at address 0x40 in the board's configuration address
space. The legal values and their corresponding functions are as follows:

M.1.3 Serial Number PROM

The serial number PROM is a 32 byte PROM beginning at offset 0x80 in the configura-
tion space. It contains the board serial number and 802 address. Accesses to the
PROM takes multiple cycles since it is a slow device. Only bits (7:0) on the PCI bus are
valid during an access to the PROM; all other bits are undefined.

Following is the format of the PCA-200A serial number PROM. Note that the format
for the MAC address is byte0:byte1:byte2:byte3:byte4:byte5.

Table N.1 - Board Control Registers

d(2:0) Action Description

0 De-assert Board
Reset

De-assert Board Reset clears the reset signals to the 960 and the bus master
state machine. The 960 will begin execution after this value is written to the
board control register.

1 Assert Board
Reset

Assert Board Reset causes the reset signals to various devices on the board
to be asserted including: the 960, the local bus controller, the IN and OUT
fifos, the network interface status, and the receive and transmit fifos. The
reset action also clears the hold bit for the local bus and the interrupt bits for
the 960 and for the PCI bus. The reset bit must remain set for a minimum of
16 PCI bus cycles, and cleared afterwards. The PCI bus /RESET signal
asserted at boot time causes a similar reset action.

2 Hold Local Bus Hold local bus causes the slave interface to gain mastership of the local bus
and to keep it as long as this bit is set. This feature can be used for read-
modify-write of critical memory regions by the host. It can also be used to
reduce access time when the host is accessing a block of local memory since
it eliminates the time to request and gain the local bus mastership from the
960 in slave accesses. Note that holding the local bus locks the 960 out of the
local bus and effectively halts it. Therefore this bit must be set only when
halting the 960 is acceptable.

3 Interrupt 960 960 interrupt asserts the XINT0 line of the 960 processor. The bit can only be
cleared by the 960 (upon servicing the interrupt); it can not be cleared by the
host by writing a 0.

Address Value

0 x 80
0 x 84
0 x 88
0 x 8C

Hardware Revision - unused
Hardware Revision - major code
Hardware Revision - minor code
Hardware Revision - sub code
N - 3Programmer’s Reference Manual for AALI Interface

PCI Bus Slave Interface
M.1.4 Local memory

The local memory consists of 256 Kbytes of SRAM, and is mapped to the PCI bus at
the beginning of the memory space address register. The entire memory is accessible
by the host. Note, however, that the first 1K bytes of the local memory is NOT acces-
sible by the 960 as this address space is mapped to the on-chip RAM.

Accessing the local memory requires gaining mastership of the local bus from the 960,
therefore requires multiple cycles depending on the bus activity of the 960. Once the
local bus mastership is gained it takes two PCI bus cycles to write to the local mem-
ory, and three PCI bus cycles to read from the local memory. The local bus hold fea-
ture described above can be used to speed up block accesses to the local memory.

M.1.5 Clear PCI bus interrupt

To aid the efficiency of the device driver, the card-to-PCI bus interrupt is cleared by
an access to the card's memory address space. A write of any value to the address
{0x40000 + memory_base_address} will clear the interrupt from the PCA-200A to the
host.

0 x 90
0 x 94
0 x 98
0 x 9C

Serial Number - bits 31:24
Serial Number - bits 23:16
Serial Number - bits 15:8
Serial Number - bits 7:0

0 x A0
0 x A4
0 x A8
0 x AC
0 x B0
0 x B4

MAC Address - byte 0
MAC Address - byte 1
MAC Address - byte 2
MAC Address - byte 3
MAC Address - byte 4
MAC Address - byte 5

Address Value
N - 4 Programmer’s Reference Manual for AALI Interface

Index
A

AAL interface firmware, loading on CP . . . 4-1
AAL null connection 3-3
AAL type null . 2-6
AAL4 . 1-1
AAL5 . 1-1
AALI firmware, version 1-1
Activate VCIN . 3-3
AIX operating system C-1
ATM Header . 2-2
atm_header . 2-2
B

BCR . 1-1
board control register

EISA bus . L-4
GIO bus . M-2

buffer supply protocol 2-10
buffer supply queue 2-10
C

cell processor . 1-1
close an incoming ATM connection 3-4
COFF . 4-4
command arguments 3-1
command completion 3-2
command queue 1-2, 3-1
command queue structure 3-1
configuration PROM

EISA bus . L-1
GIO . M-1

CP . 1-1
CP - host interaction . 1-3
CP boot sequence . 4-7
CP queue, service order 1-4
CP resident queues . 1-2
CP state . 4-9
Cp_queue structure . 4-5
D

data cells . 2-3
Deactivate VCIN . 3-4
device drivers . 1-1
DIP switches .H-1
disable rate control . 2-3
DMA . 1-1
DMA address alignmentA-1
DMA address encoding 2-1
DMA requirement

ESA-200 .A-1
HPA-200 .A-1
MCA-200 .A-1
SPARC 2 .A-1
VMA-200 .A-1

download a program 4-4
F

FIFO, memory capacities 1-4
H

head pointer . 1-3
heartbeat . 4-9
host buffer scheme

buffer scheme . 2-8
host buffer schemes . 2-8
host device drivers . 1-1
host resident pointers 4-5
I

IBM RS6000 workstation C-1
idle cells . 2-3
initialization . 1-3
ioblock member . 1-3
M

MCA-200 adapter . C-1
memory base address

EISA bus .L-3
GIO bus . M-1

memory offsets .B-1
memory-mapped access 1-1
minimum DMA requirements

DMA requirements A-1
mon960 . 4-4
MTU . 3-3
N

native network buffer 1-1
null AAL interface . 1-1
number of descriptors per block 2-10
O

opcode . 3-1
opcode modification . 3-1
open an incoming ATM connection 3-3
P

PDU receive queue . 1-2
PDU reception . 2-6
PDU transmission . 2-1
PDU transmit queue . 1-2
power up cycle . 4-4
protocol standards . 1-1
Q

queue
receive . 1-3
supply . 1-3
transmit . 1-3

queue access . 1-2
queue status . 1-2
Index - 1Programmer’s Reference Manual for AALI Interface

Index
queue types . 1-2
R

rate control . 2-3
receive block descriptor (Rbd) 1-3
receive buffer size . 2-8
receive buffer supply queues 1-2
receive FIFO . 1-4
receive PDU descriptor 2-9
receive PDU descriptor (Rpd) 1-3
resident queues, CP . 1-2
Rpd size . 2-9
S

slave interface
EISA bus . L-1
GIO bus . M-1

statistics command . 3-8
status error . 1-2
status word alignment 1-2
SUNI OC3 register commands 3-5
supply queue length 2-10
T

tail pointer . 1-3
Tpd description . 2-2
Tpd size

Tpd alignment 2-1
transmit PDU descriptor (Tpd) 1-3
Tsd description . 2-1
W

write I/O block entry 1-3
Z

zero ioblock member 1-4
Index - 2 Programmer’s Reference Manual for AALI Interface

	Preface
	Technical Support
	Typographical Styles
	Important Information Indicators

	Introduction
	1.1 Introduction
	1.1.1 Overview

	1.2 CP and Host Interaction
	1.3 Host Resident Block
	1.3.1 Queue Scheduling

	PDU Transmission and Reception
	2.1 PDU Transmission
	Figure 2.1 - Transmit PDU Descriptor (Tpd) & Tpd D...
	2.1.1 Tsd Description
	2.1.2 Tpd Description
	2.1.3 Transmit Process
	Figure 2.2 - Rate Control as Data and Idle Cells
	Figure 2.3 - Transmit Queue Snapshot One
	Figure 2.4 - Transmit Queue Snapshot Two

	2.2 PDU Reception
	Figure 2.5 - Receive Queue
	2.2.1 Receive Buffer Descriptors
	2.2.2 Receive Buffer Schemes and Sizes
	2.2.3 Receive PDU Descriptors
	2.2.4 Buffer Supply Protocol
	Figure 2.6 - Buffer Queue

	Commands
	3.1 Activate VCIN Command
	3.2 Deactivate VCIN Command
	3.3 Deactivate VCIO Command
	3.4 Activate VCIO Command
	3.5 SUNI OC3 Set Register Command
	3.6 SUNI OC3 Get Register Command
	3.7 Statistics Command

	Initialization
	4.1 Downloading the AAL Interface Firmware
	4.1.1 Fast Downloading
	4.1.2 Notes on the Firmware
	4.1.3 The Host/CP Endian Description

	4.1 Downloading the AAL Interface Firmware
	4.2 The Cp_queue Structure
	Figure 4.1 - Host -CP Shared Memory Offsets
	4.2.1 Initialize Queue Pointers

	4.3 CP Boot Sequence
	4.4 Heartbeat - CP State Indication

	DMA Address Alignment
	A.1 Minimum DMA Requirements
	Table A.1 - Minimum DMA Requirements 200 Series Ad...

	Host - CP Shared Memory Definitions
	B.1 Memory Offsets
	Figure B.1 - Host -CP Shared Memory Offsets

	MCA Modifications
	C.1 New Functionality
	C.1.1 Data Structure
	C.1.2 Host CP Interaction

	SBA-200E SBus Slave Interface
	D.1 SBus Slave Module
	Table D.1 - SDC SBus Slave Address Map

	D.2 Host Control Register
	Table D.2 - Host Control Register bit definitions

	D.3 SBus Burst transfer configuration register
	Table D.3 - SBus Burst transfer configuration regi...

	D.4 Interrupt Level Select Register
	Table D.4 - SBus Interrupt level selection registe...

	ESA-200E EISABus Slave Interface
	E.1 EISABus Slave Mode
	Table E.1 - I/O Address Map for EBI chip
	E.1.1 Host Control Register (HCR)
	Table E.2 - Host Control Register bit definitions

	E.1.2 High Base Address Register (HBAR)
	Table E.3 - High Base Address Register

	E.1.3 Low Base Address Register (LBAR)
	Table E.4 - Low Base Address Register

	E.1.4 Slave Memory Addressing
	E.1.5 Hold Lock Memory Access
	E.1.6 Slave Controller Reset

	GIA-200E GIO Bus Slave Interface
	F.1 GIOBus Slave Interface
	Table F.1 - Slave Address Space
	F.1.1 Processor Identification Word (PIW)
	F.1.2 Host Control Register (HCR)
	Table F.2 - Host Control Register

	F.1.3 Host Control Register #2
	F.1.4 Adapter Configuration PROM
	Table F.3 - PROM Address Map

	F.1.5 Local RAM

	PCA-200E PCI Bus Slave Interface
	G.1 Slave Interface
	Table G.1 - Slave Address Space
	G.1.1 Configuration Registers
	Table G.2 - Configuration Registers
	Table G.3 - PBI Configuration

	G.1.2 Host Control Register (HCR)
	Table G.4 - Host Control Register

	G.1.3 Mask Register
	G.1.4 PCI Specific Register (PSR)
	G.1.5 Adapter Expansion PROM
	G.1.6 Local RAM

	VMA-200E VME�bus Slave Interface
	H.1 VMA-200E Pre-Installation Configuration
	Figure H.1 - VMA-200E DIP Switch Locations.
	H.1.1 Slave Address Configuration
	H.1.2 VMEbus Short A16 Address Space
	Table H.1 - Short Base Address Configuration
	Table H.2 - Device Access Decoding Information

	H.1.3 VMEbus Identification PROM
	H.1.4 Host Control Register
	Table H.3 - Host Control Register�

	H.1.5 VMEbus A32 Long Slave Address Space
	Table H.4 - A32 Base Addressing

	H.1.6 VMEbus Interrupter
	Table H.5 - Interrupt Request Level

	H.1.7 VME64 Master Mode
	Table H.6 - VME64 Master Mode Selector

	MCA-200 Micro Channel Bus Slave Interface
	I.1 Slave Interface
	Table I.1 - I/O Space

	I.2 Board Control Register
	Table I.2 - Board Control Registers

	I.3 Local Memory
	I.4 Prom Data
	Table I.3 - PROM Attributes
	Table I.4 - PROM Contents

	SBA-200 SBus Slave Interface
	J.1 Slave Interface
	Table K.1 - Slave Interface Addresses

	J.2 SBus Boot PROM
	J.3 Board Control Register
	Table K.2 - Board Control Registers
	J.3.1 Local Memory

	ESA-200 EISA Bus Slave Interface
	K.1 Slave Interface
	Table L.1 - Slave Access Address Map
	K.1.1 EISA bus Configuration PROM
	K.1.2 Contents of the ESA-200 Configuration PROM
	K.1.3 Memory Base Address Register
	Table L.2 - EISA Base Address for the i960 RAM
	Table L.3 - Memory Base Address Register, High Sli...
	Table L.4 - Memory Base Address Register, Low Slic...

	K.1.4 Board Control Registers
	Table L.5 - Board Control Registers

	GIA-200 GIO Bus Slave Interface
	L.1 Slave Interface
	L.1.1 Memory Base Address
	Table M.1 - Slave Interface Addresses

	L.2 Board Control Register
	Table M.2 - Board Control Registers

	PCA-200 PCI Bus Slave Interface
	M.1 Slave Interface
	M.1.1 Configuration Space Registers
	Figure N.1 - Configuration Space Registers

	M.1.2 Board control register
	Table N.1 - Board Control Registers

	M.1.3 Serial Number PROM
	M.1.4 Local memory
	M.1.5 Clear PCI bus interrupt

